Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)

4 valoración promedio
( 16 valoraciones por Goodreads )
 
9780691151687: Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers.



Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest.



  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets

  • Features real-world data sets from contemporary astronomical surveys

  • Uses a freely available Python codebase throughout

  • Ideal for students and working astronomers

"Sinopsis" puede pertenecer a otra edición de este libro.

From the Back Cover:

"This comprehensive book is surely going to be regarded as one of the foremost texts in the new discipline of astrostatistics."--Joseph M. Hilbe, president of the International Astrostatistics Association

"In the era of data-driven science, many students and researchers have faced a barrier to entry. Until now, they have lacked an effective tutorial introduction to the array of tools and code for data mining and statistical analysis. The comprehensive overview of techniques provided in this book, accompanied by a Python toolbox, free readers to explore and analyze the data rather than reinvent the wheel."--Tony Tyson, University of California, Davis

"The authors are leading experts in the field who have utilized the techniques described here in their own very successful research. Statistics, Data Mining, and Machine Learning in Astronomy is a book that will become a key resource for the astronomy community."--Robert J. Hanisch, Space Telescope Science Institute

About the Author:

Željko Ivezić is professor of astronomy at the University of Washington. Andrew J. Connolly is professor of astronomy at the University of Washington. Jacob T. VanderPlas is an NSF postdoctoral research fellow in astronomy and computer science at the University of Washington. Alexander Gray is professor of computer science at Georgia Institute of Technology.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo Ver libro

Gastos de envío: EUR 10,24
De Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Añadir al carrito

Los mejores resultados en AbeBooks

1.

Ivezic, Zeljko
Editorial: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Cantidad: > 20
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción Princeton University Press, 2014. HRD. Estado de conservación: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. de la librería WP-9780691151687

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 62,95
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 10,24
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Željko Ivezić; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Cantidad: 5
Librería
GreatBookPrices
(Columbia, MD, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Nº de ref. de la librería 12080822-n

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 73,04
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 2,24
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Željko Ivezić; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Cantidad: 1
Librería
Speedy Hen LLC
(Sunrise, FL, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Bookseller Inventory # ST0691151687. Nº de ref. de la librería ST0691151687

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 80,07
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Editorial: Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción Princeton University Press, United States, 2014. Hardback. Estado de conservación: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Nº de ref. de la librería AAZ9780691151687

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 80,89
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Editorial: Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción Princeton University Press, United States, 2014. Hardback. Estado de conservación: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Nº de ref. de la librería AAZ9780691151687

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 80,89
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Zeljko Ivezic, Andrew J. Connolly, Jacob T VanderPlas, Alexander Gray
Editorial: Princeton University Press 2014-01-12, Princeton (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Tapa dura Cantidad: > 20
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción Princeton University Press 2014-01-12, Princeton, 2014. hardback. Estado de conservación: New. Nº de ref. de la librería 9780691151687

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 77,34
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,83
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Ivezic, Zeljko
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Cantidad: 1
Librería
Paperbackshop-US
(Wood Dale, IL, Estados Unidos de America)
Valoración
[?]

Descripción 2014. HRD. Estado de conservación: New. New Book. Shipped from US within 10 to 14 business days. Established seller since 2000. Nº de ref. de la librería KS-9780691151687

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 84,69
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,39
A Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Ivezic, Zeljko, Connolly, Andrew J., VanderPlas, Jacob T, Gray, Alexander
Editorial: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Tapa dura Cantidad: 1
Librería
Valoración
[?]

Descripción Princeton University Press, 2014. Estado de conservación: New. Provides an introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. Series: Princeton Series in Modern Observational Astronomy. Num Pages: 552 pages, 12 color illus. 2 halftones. 173 line illus. BIC Classification: PBT; PGG; UNF; UYQM. Category: (P) Professional & Vocational. Dimension: 184 x 256 x 39. Weight in Grams: 1348. . 2014. Hardcover. . . . . . Nº de ref. de la librería V9780691151687

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 88,69
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Irlanda a Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Ivezic, Zeljko
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Cantidad: > 20
Librería
Pbshop
(Wood Dale, IL, Estados Unidos de America)
Valoración
[?]

Descripción 2014. HRD. Estado de conservación: New. New Book.Shipped from US within 10 to 14 business days. Established seller since 2000. Nº de ref. de la librería IB-9780691151687

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 87,87
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,39
A Estados Unidos de America
Destinos, gastos y plazos de envío

10.

?eljko Ivezi?; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
Editorial: Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevos Tapa dura Cantidad: 1
Librería
Ria Christie Collections
(Uxbridge, Reino Unido)
Valoración
[?]

Descripción Princeton University Press, 2014. Estado de conservación: New. book. Nº de ref. de la librería ria9780691151687_rkm

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 89,16
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,40
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda