Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)

3,94 valoración promedio
( 17 valoraciones por Goodreads )
 
9780691151687: Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy)
Ver todas las copias de esta edición ISBN.
 
 

AS TELESCOPES, DETECTORS, AND COMPUTERS GROW EVER MORE POWERFUL, THE VOLUME OF DATA AT THE DISPOSAL OF ASTRONOMERS AND ASTROPHYSICISTS WILL ENTER THE PETABYTE DOMAIN, PROVIDING ACCURATE MEASUREMENTS FOR BILLIONS OF CELESTIAL OBJECTS. THIS BOOK PROVIDES A COMPREHENSIVE AND ACCESSIBLE INTRODUCTION TO THE CUTTING-EDGE STATISTICAL METHODS NEEDED TO EFFICIENTLY ANALYZE COMPLEX DATA SETS FROM ASTRONOMICAL SURVEYS SUCH AS THE PANORAMIC SURVEY TELESCOPE AND RAPID RESPONSE SYSTEM, THE DARK ENERGY SURVEY, AND THE UPCOMING LARGE SYNOPTIC SURVEY TELESCOPE. IT SERVES AS A PRACTICAL HANDBOOK FOR GRADUATE STUDENTS AND ADVANCED UNDERGRADUATES IN PHYSICS AND ASTRONOMY, AND AS AN INDISPENSABLE REFERENCE FOR RESEARCHERS. STATISTICS, DATA MINING, AND MACHINE LEARNING IN ASTRONOMY PRESENTS A WEALTH OF PRACTICAL ANALYSIS PROBLEMS, EVALUATES TECHNIQUES FOR SOLVING THEM, AND EXPLAINS HOW TO USE VARIOUS APPROACHES FOR DIFFERENT TYPES AND SIZES OF DATA SETS. FOR ALL APPLICATIONS DESCRIBED IN THE BOOK, PYTHON CODE AND EXAMPLE DATA SETS ARE PROVIDED. THE SUPPORTING DATA SETS HAVE BEEN CAREFULLY SELECTED FROM CONTEMPORARY ASTRONOMICAL SURVEYS (FOR EXAMPLE, THE SLOAN DIGITAL SKY SURVEY) AND ARE EASY TO DOWNLOAD AND USE. THE ACCOMPANYING PYTHON CODE IS PUBLICLY AVAILABLE, WELL DOCUMENTED, AND FOLLOWS UNIFORM CODING STANDARDS. TOGETHER, THE DATA SETS AND CODE ENABLE READERS TO REPRODUCE ALL THE FIGURES AND EXAMPLES, EVALUATE THE METHODS, AND ADAPT THEM TO THEIR OWN FIELDS OF INTEREST. DESCRIBES THE MOST USEFUL STATISTICAL AND DATA-MINING METHODS FOR EXTRACTING KNOWLEDGE FROM HUGE AND COMPLEX ASTRONOMICAL DATA SETS FEATURES REAL-WORLD DATA SETS FROM CONTEMPORARY ASTRONOMICAL SURVEYS USES A FREELY AVAILABLE PYTHON CODEBASE THROUGHOUT IDEAL FOR STUDENTS AND WORKING ASTRONOMERS

"Sinopsis" puede pertenecer a otra edición de este libro.

Críticas:

Winner of the 2016 IAA Outstanding Publication Award, International Astrostatistics Association "Ivezic and colleagues at the University of Washington and the Georgia Institute of Technology have written a comprehensive, accessible, well-thought-out introduction to the new and burgeoning field of astrostatistics... The authors provide another valuable service by discussing how to access data from key astronomical research programs."--Choice "A substantial work that can be of value to students and scientists interesting in mining the vast amount of astronomical data collected to date... A well-prepared introduction to this material... If data mining and machine learning fall within your interest area, this text deserves a place on your shelf."--International Planetarium Society

Reseña del editor:

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Željko Ivezić; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Cantidad disponible: 5
Librería
GreatBookPrices
(Columbia, MD, Estados Unidos de America)
Valoración
[?]

Descripción Condición: New. Nº de ref. del artículo: 12080822-n

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 65,13
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 2,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Ivezi?, ?eljko; Connolly, Andrew J.; VanderPlas, Jacob T; Gray, Alexander
Publicado por Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Tapa dura Cantidad disponible: 1
Librería
Jarhead Books
(West Chester, PA, Estados Unidos de America)
Valoración
[?]

Descripción Princeton University Press, 2014. Hardcover. Condición: New. Absolutely Brand NEW! All books ship SAME or NEXT business day!! 2nd Day Shipping Available! May not include supplements, codes etc. Contact us with any questions!. Nº de ref. del artículo: 41072

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 64,15
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,40
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Ivezic,
Publicado por Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Cantidad disponible: 18
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción Princeton University Press, 2014. HRD. Condición: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. del artículo: WP-9780691151687

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 61,95
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 10,08
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Publicado por Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Tapa dura Cantidad disponible: 10
Librería
Book Depository International
(London, Reino Unido)
Valoración
[?]

Descripción Princeton University Press, United States, 2014. Hardback. Condición: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Nº de ref. del artículo: AAH9780691151687

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 75,45
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Željko Ivezić; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Cantidad disponible: 1
Librería
Speedy Hen LLC
(Sunrise, FL, Estados Unidos de America)
Valoración
[?]

Descripción Condición: New. Bookseller Inventory # ST0691151687. Nº de ref. del artículo: ST0691151687

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 75,59
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Zeljko Ivezic, Andrew J. Connolly, Jacob Vanderplas
Publicado por Princeton University Press, United States (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Tapa dura Cantidad disponible: 10
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción Princeton University Press, United States, 2014. Hardback. Condición: New. Language: English . Brand New Book. As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers. Nº de ref. del artículo: AAH9780691151687

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 75,81
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Zeljko Ivezic (author), Andrew J. Connolly (author), Jacob T VanderPlas (author), Alexander Gray (author)
Publicado por Princeton University Press 2014-01-12, Princeton (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Tapa dura Cantidad disponible: 10
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción Princeton University Press 2014-01-12, Princeton, 2014. hardback. Condición: New. Nº de ref. del artículo: 9780691151687

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 75,20
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,72
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

?eljko Ivezi?; Andrew J. Connolly; Jacob T VanderPlas; Alexander Gray
Publicado por Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Tapa dura Cantidad disponible: 1
Librería
Ria Christie Collections
(Uxbridge, Reino Unido)
Valoración
[?]

Descripción Princeton University Press, 2014. Condición: New. book. Nº de ref. del artículo: ria9780691151687_rkm

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 79,71
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,33
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Zeljko Ivezic
Publicado por Princeton University Press
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Tapa dura Cantidad disponible: 1
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción Princeton University Press. Hardback. Condición: New. New copy - Usually dispatched within 2 working days. Nº de ref. del artículo: B9780691151687

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 77,97
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 7,77
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Ivezic, Zeljko; Connolly, Andrew J.; VanderPlas, Jacob T; Gray, Alexander
Publicado por Princeton University Press (2014)
ISBN 10: 0691151687 ISBN 13: 9780691151687
Nuevo Tapa dura Cantidad disponible: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción Princeton University Press, 2014. Hardcover. Condición: New. Nº de ref. del artículo: DADAX0691151687

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 85,22
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,40
A Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda