This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience.
The authors of this book are the same pioneers who for nearly two decades have led the investigation into the traveling salesman problem. They have derived solutions to almost eighty-six thousand cities, yet a general solution to the problem has yet to be discovered. Here they describe the method and computer code they used to solve a broad range of large-scale problems, and along the way they demonstrate the interplay of applied mathematics with increasingly powerful computing platforms. They also give the fascinating history of the problem--how it developed, and why it continues to intrigue us.
"Sinopsis" puede pertenecer a otra edición de este libro.
David L. Applegate is a researcher at AT&T Labs. Robert E. Bixby is Research Professor of Management and Noah Harding Professor of Computational and Applied Mathematics at Rice University. Vasek Chvatal is Canada Research Chair in Combinatorial Optimization at Concordia University. William J. Cook is Chandler Family Chair in Industrial and Systems Engineering at the Georgia Institute of Technology.
"This book addresses one of the most famous and important combinatorial-optimization problems--the traveling salesman problem. It is very well written, with a vivid style that captures the reader's attention. Many examples are provided that are very useful to motivate and help the reader to better understand the results presented in the book."--Matteo Fischetti, University of Padova
"This is a fantastic book. Ever since the early days of discrete optimization, the traveling salesman problem has served as the model for computationally hard problems. The authors are main players in this area who forged a team in 1988 to push the frontiers on how good we are in solving hard and large traveling salesman problems. Now they lay out their views, experience, and findings in this book."--Bert Gerards, Centrum voor Wiskunde en Informatica
"This book addresses one of the most famous and important combinatorial-optimization problems--the traveling salesman problem. It is very well written, with a vivid style that captures the reader's attention. Many examples are provided that are very useful to motivate and help the reader to better understand the results presented in the book."--Matteo Fischetti, University of Padova
"This is a fantastic book. Ever since the early days of discrete optimization, the traveling salesman problem has served as the model for computationally hard problems. The authors are main players in this area who forged a team in 1988 to push the frontiers on how good we are in solving hard and large traveling salesman problems. Now they lay out their views, experience, and findings in this book."--Bert Gerards, Centrum voor Wiskunde en Informatica
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 18,80 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 19,09 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Nº de ref. del artículo: 40634450-6
Cantidad disponible: 2 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Good. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 9812535-6
Cantidad disponible: 1 disponibles
Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Hardback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR014345188
Cantidad disponible: 1 disponibles
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 111852
Cantidad disponible: 3 disponibles
Librería: medimops, Berlin, Alemania
Condición: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Nº de ref. del artículo: M00691129932-G
Cantidad disponible: 1 disponibles
Librería: Wonder Book, Frederick, MD, Estados Unidos de America
Condición: Very Good. . Owner's name on inside. Princeton Series in Applied Mathematics, 40. (Mathematics, Applied mathematics, Computational study). Nº de ref. del artículo: C05OS-00818
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780691129938_new
Cantidad disponible: 3 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: DB-9780691129938
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 4386411
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 4386411
Cantidad disponible: 2 disponibles