Explains new applications of the 'large sieve', an important tool of analytic number theory, presenting potential uses beyond this area.
"Sinopsis" puede pertenecer a otra edición de este libro.
Emmanuel Kowalski is Professor in the Departement Mathematik at ETH Zürich.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 138230
Cantidad disponible: 7 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190020496
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9780521888516
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realization that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups. The 'large sieve', an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780521888516
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 1st edition. 320 pages. 9.25x6.25x1.00 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0521888514
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 660. Nº de ref. del artículo: C9780521888516
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. xxi + 293 Index. Nº de ref. del artículo: 26416152
Cantidad disponible: 4 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realization that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups. The 'large sieve', an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780521888516
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The large sieve , an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fi. Nº de ref. del artículo: 446952370
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. xxi + 293 Illus. Nº de ref. del artículo: 7464519
Cantidad disponible: 4 disponibles