This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes many traditional elements of the subject. It gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems.
"Sinopsis" puede pertenecer a otra edición de este libro.
'... will certainly benefit young researchers entering the described field.' Jan Cholewa, Zentralblatt MATH
'This impressive book offers an excellent, self-contained introduction to many important aspects of infinite-dimensional systems ... At the outset, the author states that his aim was to produce a didactic text suitable or first-year graduate students. Unquestionably he has achieved his goal. This book should prove invaluable to mathematicians wishing to gain some knowledge of the dynamical-systems approach to dissipative partial differential equations that has been developed during the past 20 years, and should be essential reading for any graduate student starting out on a PhD in this area.' W. Lamb, Proceedings of the Edinburgh Mathematical Society
'The book is written clearly and concisely. It is well structured, and the material is presented in a rigorous, coherent fashion. A number of example problems are treated, and each chapter is followed by a series of problems whose solutions are available on the internet. ... constitutes an excellent resource for researchers and advanced graduate students in applied mathematics, dynamical systems, nonlinear dynamics, and computational mechanics. Its acquisition by libraries is strongly recommended.' Applied Mechanics Reviews
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,64 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoGRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-140496
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-104841
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780521632041_new
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: Used. pp. 480 14 Illus. Nº de ref. del artículo: 8361574
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 900. Nº de ref. del artículo: C9780521632041
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190010260
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780521632041
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 1st edition. 461 pages. 9.25x6.25x1.00 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0521632048
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9780521632041
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America
Hardcover. Condición: new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780521632041
Cantidad disponible: 1 disponibles