This book describes how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. Specialists in graph theory will welcome this treatment of important new research.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
This book describes how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labelling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. Current research on these topics may be seen as part of a wider effort to forge closer links between algebra and combinatorics (in particular between linear algebra and graph theory).
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Betterbks/ COSMOPOLITAN BOOK SHOP, Burbank, CA, Estados Unidos de America
Hardcover. Condición: Good. No Jacket. 1st Edition. Octavo. Diagrams. Condition: ex-library copy with library markings; two-inch split to middle of front outer hinge; binding sun-faded with minor wear; else good. Pages: xiii, 258. Nº de ref. del artículo: 301102A
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. Volume 66. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. Clean from markings. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,600grams, ISBN:0521573521. Nº de ref. del artículo: 9535695
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190007791
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 846446-n
Cantidad disponible: Más de 20 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Gut. Zustand: Gut | Seiten: 276 | Sprache: Englisch | Produktart: Bücher | This book describes how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labelling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. Current research on these topics may be seen as part of a wider effort to forge closer links between algebra and combinatorics (in particular between linear algebra and graph theory). Nº de ref. del artículo: 2584894/203
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780521573528_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 846446
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Graph theory is an important branch of contemporary combinatorial mathematics. By describing recent results in algebraic graph theory and demonstrating how linear algebra can be used to tackle graph-theoretical problems, the authors provide new techniques for specialists in graph theory. The book explains how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labeling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. Current research on these topics is part of a wider effort to forge closer links between algebra and combinatorics. Problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research. This book describes how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labelling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. Current research on these topics may be seen as part of a wider effort to forge closer links between algebra and combinatorics (in particular between linear algebra and graph theory). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780521573528
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 846446-n
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 258 pages. 9.75x6.50x0.75 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0521573521
Cantidad disponible: 1 disponibles