This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics, the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration.
"Sinopsis" puede pertenecer a otra edición de este libro.
Book by Koblitz Neal
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 67,18 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,73 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780521280600_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9780521280600
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. InhaltsverzeichnisPreface 1. Basics 2. p-adic functions, l-functions and r-functions 3. Gauss sums and the p-adic gamma function 4. p-adic regulators Appendix Bibliography Index.KlappentextThis introduc. Nº de ref. del artículo: 446930676
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 140 pages. 9.25x5.75x0.50 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0521280605
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research. Nº de ref. del artículo: 9780521280600
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9780521280600
Cantidad disponible: 10 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 140 pages. 9.25x5.75x0.50 inches. In Stock. Nº de ref. del artículo: x-0521280605
Cantidad disponible: 2 disponibles
Librería: Vintage Books and Fine Art, Oxford, MD, Estados Unidos de America
Paperback. Condición: Good. Estado de la sobrecubierta: Not Issued. Trade paperback. Square Tight Binding.Clean interior, save for p/o signature to inside top of front wrap. Mild edge wear wth moderate rubbing to wraps. Nº de ref. del artículo: 12930
Cantidad disponible: 1 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research. This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780521280600
Cantidad disponible: 1 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research. This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780521280600
Cantidad disponible: 1 disponibles