This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580245958
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Several geometric problems can be formulated in terms of the arrangement of a collection of curves in a plane, which has made this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane. The first problem is a proof of almost tight bounds on the length of (n,s)-DavenportSchinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed. Researchers in computational and combinatorial geometry should find much to interest them in this book. Several geometric problems can be formulated in terms of the arrangements of a collection of curves in a plane, making this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of problems related to arrangements of lines or curves in the plane. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780521168472
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 293 pages. 9.00x5.20x0.80 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0521168473
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9780521168472
Cantidad disponible: 10 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9780521168472
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 296. Nº de ref. del artículo: 26617048
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 296 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 8312199
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 296. Nº de ref. del artículo: 18617042
Cantidad disponible: 4 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Several geometric problems can be formulated in terms of the arrangement of a collection of curves in a plane, which has made this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane. The first problem is a proof of almost tight bounds on the length of (n,s)-DavenportSchinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed. Researchers in computational and combinatorial geometry should find much to interest them in this book. Several geometric problems can be formulated in terms of the arrangements of a collection of curves in a plane, making this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of problems related to arrangements of lines or curves in the plane. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780521168472
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Several geometric problems can be formulated in terms of the arrangements of a collection of curves in a plane, making this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of problems rel. Nº de ref. del artículo: 446928488
Cantidad disponible: Más de 20 disponibles