This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. It is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,32 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,20 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Better World Books: West, Reno, NV, Estados Unidos de America
Condición: Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Nº de ref. del artículo: 12356663-75
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780521118620_new
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 1st edition. 403 pages. 8.75x5.75x0.75 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __052111862X
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 6952043-n
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9780521118620
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 6952043-n
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. It is intended to be accessible to research. Nº de ref. del artículo: 446926579
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 1st edition. 403 pages. 8.75x5.75x0.75 inches. In Stock. Nº de ref. del artículo: x-052111862X
Cantidad disponible: 2 disponibles
Librería: TextbookRush, Grandview Heights, OH, Estados Unidos de America
Condición: Good. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Nº de ref. del artículo: 52284459
Cantidad disponible: 1 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. It is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780521118620
Cantidad disponible: 1 disponibles