How can we engineer systems capable of "cocktail party" listening?
Human listeners are able to perceptually segregate one sound source from an acoustic mixture, such as a single voice from a mixture of other voices and music at a busy cocktail party. How can we engineer "machine listening" systems that achieve this perceptual feat?
Albert Bregman's book Auditory Scene Analysis, published in 1990, drew an analogy between the perception of auditory scenes and visual scenes, and described a coherent framework for understanding the perceptual organization of sound. His account has stimulated much interest in computational studies of hearing. Such studies are motivated in part by the demand for practical sound separation systems, which have many applications including noise-robust automatic speech recognition, hearing prostheses, and automatic music transcription. This emerging field has become known as computational auditory scene analysis (CASA).
Computational Auditory Scene Analysis: Principles, Algorithms, and Applications provides a comprehensive and coherent account of the state of the art in CASA, in terms of the underlying principles, the algorithms and system architectures that are employed, and the potential applications of this exciting new technology. With a Foreword by Bregman, its chapters are written by leading researchers and cover a wide range of topics including:
The text is written at a level that will be accessible to graduate students and researchers from related science and engineering disciplines. The extensive bibliography accompanying each chapter will also make this book a valuable reference source. A web site accompanying the text, http://www.casabook.org, features software tools and sound demonstrations.
"Sinopsis" puede pertenecer a otra edición de este libro.
Editors DeLIANG WANG and GUY J. BROWN are well-known for their contributions to the development of CASA. Wang is a Professor in the Department of Computer Science and Engineering and the Center for Cognitive Science at The Ohio State University. He is an IEEE Fellow. Brown is a Senior Lecturer in the Department of Computer Science at the University of Sheffield, UK.
How can we engineer systems capable of "cocktail party" listening?
Human listeners are able to perceptually segregate one sound source from an acoustic mixture, such as a single voice from a mixture of other voices and music at a busy cocktail party. How can we engineer "machine listening" systems that achieve this perceptual feat?
Albert Bregman's book Auditory Scene Analysis, published in 1990, drew an analogy between the perception of auditory scenes and visual scenes, and described a coherent framework for understanding the perceptual organization of sound. His account has stimulated much interest in computational studies of hearing. Such studies are motivated in part by the demand for practical sound separation systems, which have many applications including noise-robust automatic speech recognition, hearing prostheses, and automatic music transcription. This emerging field has become known as computational auditory scene analysis (CASA).
Computational Auditory Scene Analysis: Principles, Algorithms, and Applications provides a comprehensive and coherent account of the state of the art in CASA, in terms of the underlying principles, the algorithms and system architectures that are employed, and the potential applications of this exciting new technology. With a Foreword by Bregman, its chapters are written by leading researchers and cover a wide range of topics including:
The text is written at a level that will be accessible to graduate students and researchers from related science and engineering disciplines. The extensive bibliography accompanying each chapter will also make this book a valuable reference source. A web site accompanying the text (www.casabook.org) features software tools and sound demonstrations.
How can we engineer systems capable of cocktail party listening?
Human listeners are able to perceptually segregate one sound source from an acoustic mixture, such as a single voice from a mixture of other voices and music at a busy cocktail party. How can we engineer machine listening systems that achieve this perceptual feat?
Albert Bregman's book Auditory Scene Analysis, published in 1990, drew an analogy between the perception of auditory scenes and visual scenes, and described a coherent framework for understanding the perceptual organization of sound. His account has stimulated much interest in computational studies of hearing. Such studies are motivated in part by the demand for practical sound separation systems, which have many applications including noise-robust automatic speech recognition, hearing prostheses, and automatic music transcription. This emerging field has become known as computational auditory scene analysis (CASA).
Computational Auditory Scene Analysis: Principles, Algorithms, and Applications provides a comprehensive and coherent account of the state of the art in CASA, in terms of the underlying principles, the algorithms and system architectures that are employed, and the potential applications of this exciting new technology. With a Foreword by Bregman, its chapters are written by leading researchers and cover a wide range of topics including:
The text is written at a level that will be accessible to graduate students and researchers from related science and engineering disciplines. The extensive bibliography accompanying each chapter will also make this book a valuable reference source. A web site accompanying the text (www.casabook.org) features software tools and sound demonstrations.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_374168657
Cantidad disponible: 1 disponibles
Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
Condición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Nº de ref. del artículo: Z1-C-038-03251
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580225831
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 3374488-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780471741091_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 3374488-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. How can we engineer systems capable of "cocktail party" listening? Human listeners are able to perceptually segregate one sound source from an acoustic mixture, such as a single voice from a mixture of other voices and music at a busy cocktail party. How can we engineer "machine listening" systems that achieve this perceptual feat? Albert Bregman's book Auditory Scene Analysis, published in 1990, drew an analogy between the perception of auditory scenes and visual scenes, and described a coherent framework for understanding the perceptual organization of sound. His account has stimulated much interest in computational studies of hearing. Such studies are motivated in part by the demand for practical sound separation systems, which have many applications including noise-robust automatic speech recognition, hearing prostheses, and automatic music transcription. This emerging field has become known as computational auditory scene analysis (CASA). Computational Auditory Scene Analysis: Principles, Algorithms, and Applications provides a comprehensive and coherent account of the state of the art in CASA, in terms of the underlying principles, the algorithms and system architectures that are employed, and the potential applications of this exciting new technology. With a Foreword by Bregman, its chapters are written by leading researchers and cover a wide range of topics including: Estimation of multiple fundamental frequenciesFeature-based and model-based approaches to CASASound separation based on spatial locationProcessing for reverberant environmentsSegregation of speech and musical signalsAutomatic speech recognition in noisy environmentsNeural and perceptual modeling of auditory organization The text is written at a level that will be accessible to graduate students and researchers from related science and engineering disciplines. The extensive bibliography accompanying each chapter will also make this book a valuable reference source. A web site accompanying the text, , features software tools and sound demonstrations. How can we engineer systems capable of "cocktail party" listening? Human listeners are able to perceptually segregate one sound source from an acoustic mixture, such as a single voice from a mixture of other voices and music at a busy cocktail party. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780471741091
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. Nº de ref. del artículo: B9780471741091
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. xxiii + 395 Illus. Nº de ref. del artículo: 7475274
Cantidad disponible: 3 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. How can we engineer systems capable of "cocktail party" listening? Human listeners are able to perceptually segregate one sound source from an acoustic mixture, such as a single voice from a mixture of other voices and music at a busy cocktail party. Editor(s): Wang, DeLiang; Brown, Guy J. Num Pages: 396 pages, Illustrations. BIC Classification: UYU. Category: (P) Professional & Vocational. Dimension: 235 x 165 x 25. Weight in Grams: 720. . 2006. 1st Edition. Hardcover. . . . . Nº de ref. del artículo: V9780471741091
Cantidad disponible: Más de 20 disponibles