"Sinopsis" puede pertenecer a otra edición de este libro.
JEFFREY T. SPOONER is a senior member of the technical staff at Sandia National Laboratories, Albuquerque, New Mexico.
MANFREDI MAGGIORE is an assistant professor in the Department of Electrical and Computer Engineering at the University of Toronto, Canada.
RAÚL ORDÓÑEZ is an assistant professor in the Department of Electrical and Computer Engineering at the University of Dayton, Ohio.
KEVIN M. PASSINO is a professor in the Department of Electrical Engineering at The Ohio State University.
A powerful, yet easy-to-use design methodology for the control of nonlinear dynamic systems
A key issue in the design of control systems is proving that the resulting closed-loop system is stable, especially in cases of high consequence applications, where process variations or failure could result in unacceptable risk. Adaptive control techniques provide a proven methodology for designing stable controllers for systems that may possess a large amount of uncertainty. At the same time, the benefits of neural networks and fuzzy systems are generating much excitement-- and impressive innovations-- in almost every engineering discipline.
Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques brings together these two different but equally useful approaches to the control of nonlinear systems in order to provide students and practitioners with the background necessary to understand and contribute to this emerging field.
The text presents a control methodology that may be verified with mathematical rigor while possessing the flexibility and ease of implementation associated with "intelligent control" approaches. The authors show how these methodologies may be applied to many real-world systems including motor control, aircraft control, industrial automation, and many other challenging nonlinear systems. They provide explicit guidelines to make the design and application of the various techniques a practical and painless process.
Design techniques are presented for nonlinear multi-input multi-output (MIMO) systems in state-feedback, output-feedback, continuous or discrete-time, or even decentralized form. To help students and practitioners new to the field grasp and sustain mastery of the material, the book features:
* Background material on fuzzy systems and neural networks
* Step-by-step controller design
* Numerous examples
* Case studies using "real world" applications
* Homework problems and design projects
A powerful, yet easy-to-use design methodology for the control of nonlinear dynamic systems
A key issue in the design of control systems is proving that the resulting closed-loop system is stable, especially in cases of high consequence applications, where process variations or failure could result in unacceptable risk. Adaptive control techniques provide a proven methodology for designing stable controllers for systems that may possess a large amount of uncertainty. At the same time, the benefits of neural networks and fuzzy systems are generating much excitement-- and impressive innovations-- in almost every engineering discipline.
Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques brings together these two different but equally useful approaches to the control of nonlinear systems in order to provide students and practitioners with the background necessary to understand and contribute to this emerging field.
The text presents a control methodology that may be verified with mathematical rigor while possessing the flexibility and ease of implementation associated with intelligent control approaches. The authors show how these methodologies may be applied to many real-world systems including motor control, aircraft control, industrial automation, and many other challenging nonlinear systems. They provide explicit guidelines to make the design and application of the various techniques a practical and painless process.
Design techniques are presented for nonlinear multi-input multi-output (MIMO) systems in state-feedback, output-feedback, continuous or discrete-time, or even decentralized form. To help students and practitioners new to the field grasp and sustain mastery of the material, the book features:
* Background material on fuzzy systems and neural networks
* Step-by-step controller design
* Numerous examples
* Case studies using real world applications
* Homework problems and design projects
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,35 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 4,93 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9780471415466
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780471415466_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 603760-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 603760-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 603760
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 603760
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. JEFFREY T. SPOONER is a senior member of the technical staff at Sandia National Laboratories, Albuquerque, New Mexico.MANFREDI MAGGIORE is an assistant professor in the Department of Electrical and Computer Engineering at the University of Toronto, Canada.R. Nº de ref. del artículo: 446916467
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - Thema dieses Buches ist die Anwendung neuronaler Netze und Fuzzy-Logic-Methoden zur Identifikation und Steuerung nichtlinear-dynamischer Systeme. Dabei werden fortgeschrittene Konzepte der herkömmlichen Steuerungstheorie mit den intuitiven Eigenschaften intelligenter Systeme kombiniert, um praxisrelevante Steuerungsaufgaben zu lösen. Die Autoren bieten viel Hintergrundmaterial; ausgearbeitete Beispiele und Übungsaufgaben helfen Studenten und Praktikern beim Vertiefen des Stoffes. Lösungen zu den Aufgaben sowie MATLAB-Codebeispiele sind ebenfalls enthalten. Nº de ref. del artículo: 9780471415466
Cantidad disponible: 2 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. Includes a solution manual for problems.Provides MATLAB code for examples and solutions.Deals with robust systems in both theory and practice. Includes a solution manual for problems.Provides MATLAB code for examples and solutions.Deals with robust systems in both theory and practice. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780471415466
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2001. 1st Edition. Hardcover. This book describes the use of neural networks and fuzzy methods for identifying and controlling nonlinear dynamical systems. It combines advanced concepts from traditional control theory with the intuitive properties of intelligent systems to solve real-world control problems. Series: Adaptive and Learning Systems for Signal Processing, Communications and Control Series. Num Pages: 568 pages, Illustrations. BIC Classification: PBWR; TJFM. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 243 x 167 x 36. Weight in Grams: 982. . . . . . Nº de ref. del artículo: V9780471415466
Cantidad disponible: Más de 20 disponibles