Provides comprehensive treatment of the theory of both static and dynamic neural networks.
* Theoretical concepts are illustrated by reference to practical examples Includes end-of-chapter exercises and end-of-chapter exercises.
*An Instructor Support FTP site is available from the Wiley editorial department.
"Sinopsis" puede pertenecer a otra edición de este libro.
MADAN M. GUPTA is a professor in the Intelligent Systems Research Laboratory at the University of Saskatchewan, Canada. He received a BE from the Birla Institute of Technology and Science, Pilani, India, and a PhD from the University of Warwick, Canada. A Fellow of the IEEE and the SPIE, Professor Gupta has been awarded the Kaufmann Prize Gold Medal for Research in the field of fuzzy logic.
LIANG JIN received a BS and MSc in electrical engineering from the Changsha Institute of Technology, China, and a PhD in electrical engineering from the Chinese Academy of Space Technology. He is a senior member of the technical staff at Agere Systems in Allentown, Pennsylvania.
NORIYASU HOMMA earned a BA, MA, and PhD in electrical and communication engineering from Tohoku University, Japan, where he is an associate professor. He is currently a visiting professor at the Intelligent Systems Research Laboratory, College of Engineering, University of Saskatchewan, Canada.
A solid introduction to the concepts and advanced applications of neural networks
Since the 1980s, the field of neural networks has undergone exponential growth. Robots in manufacturing, mining, agriculture, space and ocean exploration, and health sciences are just a few examples of the challenging applications where human-like attributes such as cognition and intelligence are playing an important role. Neural networks and related areas such as fuzzy logic and soft-computing in general are also contributing to complex decision-making in such fields as health sciences, management, economics, politics, law, and administration. In the future, robots could evolve into electro-mechanical systems with cognitive skills approaching human intelligence.
With a fascinating blend of heuristic concepts and mathematical rigor, Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory outlines the basic concepts behind neural networks and leads the reader onward to more advanced theory and applications. Pedagogically sound and clearly written, this text discusses:
Thoroughly surveying the many-faceted and increasingly influential field of neural networks, this is a valuable reference for both practitioner and student.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 65,17 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Big River Books, Powder Springs, GA, Estados Unidos de America
Condición: good. This book is in good condition. The cover has minor creases or bends. The binding is tight and pages are intact. Some pages may have writing or highlighting. Nº de ref. del artículo: 1EYX65000SD8_ns
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. MADAN M. GUPTA is a professor in the Intelligent Systems Research Laboratory at the University of Saskatchewan, Canada. He received a BE from the Birla Institute of Technology and Science, Pilani, India, and a PhD from the University of Warwick, Canada. A F. Nº de ref. del artículo: 556560227
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 956668
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 956668
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 956668-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780471219484_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - Neuronale Netze haben sich in vielen Bereichen der Informatik und künstlichen Intelligenz, der Robotik, Prozeßsteuerung und Entscheidungsfindung bewährt. Um solche Netze für immer komplexere Aufgaben entwickeln zu können, benötigen Sie solide Kenntnisse der Theorie statischer und dynamischer neuronaler Netze. Aneignen können Sie sie sich mit diesem Lehrbuch! Alle theoretischen Konzepte sind in anschaulicher Weise mit praktischen Anwendungen verknüpft. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen. Nº de ref. del artículo: 9780471219484
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 956668-n
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. Provides comprehensive treatment of the theory of both static and dynamic neural networks. * Theoretical concepts are illustrated by reference to practical examples Includes end-of-chapter exercises and end-of-chapter exercises. *An Instructor Support FTP site is available from the Wiley editorial department. Provides comprehensive treatment of the theory of both static and dynamic neural networks. * Theoretical concepts are illustrated by reference to practical examples Includes end-of-chapter exercises and end-of-chapter exercises. *An Instructor Support FTP site is available from the Wiley editorial department. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780471219484
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. xxviii + 722 Illus. Nº de ref. del artículo: 7480835
Cantidad disponible: 3 disponibles