A precise and accessible presentation of linear model theory, illustrated with data examples
Statisticians often use linear models for data analysis and for developing new statistical methods. Most books on the subject have historically discussed univariate, multivariate, and mixed linear models separately, whereas Linear Model Theory: Univariate, Multivariate, and Mixed Models presents a unified treatment in order to make clear the distinctions among the three classes of models.
Linear Model Theory: Univariate, Multivariate, and Mixed Models begins with six chapters devoted to providing brief and clear mathematical statements of models, procedures, and notation. Data examples motivate and illustrate the models. Chapters 7-10 address distribution theory of multivariate Gaussian variables and quadratic forms. Chapters 11-19 detail methods for estimation, hypothesis testing, and confidence intervals. The final chapters, 20-23, concentrate on choosing a sample size. Substantial sets of excercises of varying difficulty serve instructors for their classes, as well as help students to test their own knowledge.
The reader needs a basic knowledge of statistics, probability, and inference, as well as a solid background in matrix theory and applied univariate linear models from a matrix perspective. Topics covered include:
Filling the need for a text that provides the necessary theoretical foundations for applying a wide range of methods in real situations, Linear Model Theory: Univariate, Multivariate, and Mixed Models centers on linear models of interval scale responses with finite second moments. Models with complex predictors, complex responses, or both, motivate the presentation.
"Sinopsis" puede pertenecer a otra edición de este libro.
KEITH E. MULLER, PhD, is Professor and Director of the Division of Biostatistics in the Department of Epidemiology and Health Policy Research in the College of Medicine at the University of Florida in Gainesville, as well as Professor Emeritus of Biostatistics at The University of North Carolina at Chapel Hill where the book was written.
PAUL W. STEWART, PhD, is Research Associate Professor of Biostatistics at The University of North Carolina at Chapel Hill.
A precise and accessible presentation of linear model theory, illustrated with data examples
Statisticians often use linear models for data analysis and for developing new statistical methods. Most books on the subject have historically discussed univariate, multivariate, and mixed linear models separately, whereas Linear Model Theory: Univariate, Multivariate, and Mixed Models presents a unified treatment in order to make clear the distinctions among the three classes of models.
Linear Model Theory: Univariate, Multivariate, and Mixed Models begins with six chapters devoted to providing brief and clear mathematical statements of models, procedures, and notation. Data examples motivate and illustrate the models. Chapters 7-10 address distribution theory of multivariate Gaussian variables and quadratic forms. Chapters 11-19 detail methods for estimation, hypothesis testing, and confidence intervals. The final chapters, 20-23, concentrate on choosing a sample size. Substantial sets of excercises of varying difficulty serve instructors for their classes, as well as help students to test their own knowledge.
The reader needs a basic knowledge of statistics, probability, and inference, as well as a solid background in matrix theory and applied univariate linear models from a matrix perspective. Topics covered include:
Filling the need for a text that provides the necessary theoretical foundations for applying a wide range of methods in real situations, Linear Model Theory: Univariate, Multivariate, and Mixed Models centers on linear models of interval scale responses with finite second moments. Models with complex predictors, complex responses, or both, motivate the presentation.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,89 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoGRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Feldman's Books, Menlo Park, CA, Estados Unidos de America
Hardcover. Condición: Very Good++. 1st Edition. Nº de ref. del artículo: 045401
Cantidad disponible: 1 disponibles
Librería: Feldman's Books, Menlo Park, CA, Estados Unidos de America
Hardcover. Condición: Very Good++. 1st Edition. Nº de ref. del artículo: 045402
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. A precise and accessible presentation of linear model theory, illustrated with data examples Statisticians often use linear models for data analysis and for developing new statistical methods. Most books on the subject have historically discussed univariate, multivariate, and mixed linear models separately, whereas Linear Model Theory: Univariate, Multivariate, and Mixed Models presents a unified treatment in order to make clear the distinctions among the three classes of models. Linear Model Theory: Univariate, Multivariate, and Mixed Models begins with six chapters devoted to providing brief and clear mathematical statements of models, procedures, and notation. Data examples motivate and illustrate the models. Chapters 7-10 address distribution theory of multivariate Gaussian variables and quadratic forms. Chapters 11-19 detail methods for estimation, hypothesis testing, and confidence intervals. The final chapters, 20-23, concentrate on choosing a sample size. Substantial sets of excercises of varying difficulty serve instructors for their classes, as well as help students to test their own knowledge. The reader needs a basic knowledge of statistics, probability, and inference, as well as a solid background in matrix theory and applied univariate linear models from a matrix perspective. Topics covered include: A review of matrix algebra for linear modelsThe general linear univariate modelThe general linear multivariate modelGeneralizations of the multivariate linear modelThe linear mixed modelMultivariate distribution theoryEstimation in linear modelsTests in Gaussian linear modelsChoosing a sample size in Gaussian linear models Filling the need for a text that provides the necessary theoretical foundations for applying a wide range of methods in real situations, Linear Model Theory: Univariate, Multivariate, and Mixed Models centers on linear models of interval scale responses with finite second moments. Models with complex predictors, complex responses, or both, motivate the presentation. Fundamentals of Multivariate Linear Models: Theory and Application consists of five parts. Part 1 centers on brief, clear mathematical statements of notation, assumptions, and formulas. Real data examples illustrate and motivate students. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780471214885
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780471214885_new
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 724. Nº de ref. del artículo: B9780471214885
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. xiv + 410. Nº de ref. del artículo: 7480841
Cantidad disponible: 3 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Fundamentals of Multivariate Linear Models: Theory and Application consists of five parts. Part 1 centers on brief, clear mathematical statements of notation, assumptions, and formulas. Real data examples illustrate and motivate students. Num Pages: 410 pages, illustrations. BIC Classification: PBT. Category: (P) Professional & Vocational. Dimension: 241 x 161 x 24. Weight in Grams: 694. . 2006. 1st Edition. Hardcover. . . . . Nº de ref. del artículo: V9780471214885
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. A precise and accessible presentation of linear model theory, illustrated with data examples Statisticians often use linear models for data analysis and for developing new statistical methods. Most books on the subject have historically discussed univariate, multivariate, and mixed linear models separately, whereas Linear Model Theory: Univariate, Multivariate, and Mixed Models presents a unified treatment in order to make clear the distinctions among the three classes of models. Linear Model Theory: Univariate, Multivariate, and Mixed Models begins with six chapters devoted to providing brief and clear mathematical statements of models, procedures, and notation. Data examples motivate and illustrate the models. Chapters 7-10 address distribution theory of multivariate Gaussian variables and quadratic forms. Chapters 11-19 detail methods for estimation, hypothesis testing, and confidence intervals. The final chapters, 20-23, concentrate on choosing a sample size. Substantial sets of excercises of varying difficulty serve instructors for their classes, as well as help students to test their own knowledge. The reader needs a basic knowledge of statistics, probability, and inference, as well as a solid background in matrix theory and applied univariate linear models from a matrix perspective. Topics covered include: A review of matrix algebra for linear modelsThe general linear univariate modelThe general linear multivariate modelGeneralizations of the multivariate linear modelThe linear mixed modelMultivariate distribution theoryEstimation in linear modelsTests in Gaussian linear modelsChoosing a sample size in Gaussian linear models Filling the need for a text that provides the necessary theoretical foundations for applying a wide range of methods in real situations, Linear Model Theory: Univariate, Multivariate, and Mixed Models centers on linear models of interval scale responses with finite second moments. Models with complex predictors, complex responses, or both, motivate the presentation. Fundamentals of Multivariate Linear Models: Theory and Application consists of five parts. Part 1 centers on brief, clear mathematical statements of notation, assumptions, and formulas. Real data examples illustrate and motivate students. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780471214885
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. xiv + 410 Index. Nº de ref. del artículo: 26367062
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 1st edition. 410 pages. 9.50x6.50x1.00 inches. In Stock. Nº de ref. del artículo: __0471214884
Cantidad disponible: 2 disponibles