Data mining can be defined as the process of selection, exploration and modelling of large databases, in order to discover models and patterns. The increasing availability of data in the current information society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract such knowledge from data. Applications occur in many different fields, including statistics, computer science, machine learning, economics, marketing and finance. This book is the first to describe applied data mining methods in a consistent statistical framework, and then show how they can be applied in practice. All the methods described are either computational, or of a statistical modelling nature. Complex probabilistic models and mathematical tools are not used, so the book is accessible to a wide audience of students and industry professionals. The second half of the book consists of nine case studies, taken from the author's own work in industry, that demonstrate how the methods described can be applied to real problems. Provides a solid introduction to applied data mining methods in a consistent statistical framework Includes coverage of classical, multivariate and Bayesian statistical methodology Includes many recent developments such as web mining, sequential Bayesian analysis and memory based reasoning Each statistical method described is illustrated with real life applications Features a number of detailed case studies based on applied projects within industry Incorporates discussion on software used in data mining, with particular emphasis on SAS Supported by a website featuring data sets, software and additional material Includes an extensive bibliography and pointers to further reading within the text Author has many years experience teaching introductory and multivariate statistics and data mining, and working on applied projects within industry A valuable resource for advanced undergraduate and graduate students of applied statistics, data mining, computer science and economics, as well as for professionals working in industry on projects involving large volumes of data -- such as in marketing or financial risk management. Data sets used in the case studies are available at ftp://ftp.wiley.co.uk/pub/books/giudici
"Sinopsis" puede pertenecer a otra edición de este libro.
" a book with many nice features that has elements of interest for every subset of the intended audience " (Journal of the American Statistical Association, September 2006) "The author s style is consistently readable. Stripping out all but the barest essential mathematics makes the remaining material very approachable to a model centric audience." (Technometrics, February 2005)
Data mining can be defined as the process of selection, exploration and modelling of large databases, in order to discover models and patterns. The increasing availability of data in the current information society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract such knowledge from data. Applications occur in many different fields, including statistics, computer science, machine learning, economics, marketing and finance. This book is the first to describe applied data mining methods in a consistent statistical framework, and then show how they can be applied in practice. All the methods described are either computational, or of a statistical modelling nature. Complex probabilistic models and mathematical tools are not used, so the book is accessible to a wide audience of students and industry professionals. The second half of the book consists of nine case studies, taken from the author's own work in industry, that demonstrate how the methods described can be applied to real problems. Provides a solid introduction to applied data mining methods in a consistent statistical framework Includes coverage of classical, multivariate and Bayesian statistical methodology Includes many recent developments such as web mining, sequential Bayesian analysis and memory based reasoning Each statistical method described is illustrated with real life applications Features a number of detailed case studies based on applied projects within industry Incorporates discussion on software used in data mining, with particular emphasis on SAS Supported by a website featuring data sets, software and additional material Includes an extensive bibliography and pointers to further reading within the text Author has many years experience teaching introductory and multivariate statistics and data mining, and working on applied projects within industry A valuable resource for advanced undergraduate and graduate students of applied statistics, data mining, computer science and economics, as well as for professionals working in industry on projects involving large volumes of data -- such as in marketing or financial risk management. Data sets used in the case studies are available at ftp://ftp.wiley.co.uk/pub/books/giudici
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 15,95 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Modernes Antiquariat an der Kyll, Lissendorf, Alemania
hardcover. Condición: Wie neu. Auflage: 1. minimale Lagerspuren am Buch, Inhalt einwandfrei und ungelesen 223866 Sprache: Englisch Gewicht in Gramm: 680. Nº de ref. del artículo: 219167
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 62 GIU 9780470846780 Sprache: Englisch Gewicht in Gramm: 1150. Nº de ref. del artículo: 2503865
Cantidad disponible: 1 disponibles