Artículos relacionados a Kernel Methods for Remote Sensing Data Analysis

Kernel Methods for Remote Sensing Data Analysis - Tapa dura

 
9780470722114: Kernel Methods for Remote Sensing Data Analysis

Sinopsis

Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful  across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection.

 

Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges:

  • Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods.
  • Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection.
  • Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification.
  • Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. 
  • Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions.

This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Gustavo Camps-Valls was born in Valencia, Spain in 1972, and received a B.Sc. degree in Physics (1996), a B.Sc. degree in Electronics Engineering (1998), and a Ph.D. degree in Physics (2002) from the Universitat de Valencia. He is currently an associate professor in the Department of Electronics Engineering at the Universitat de Valencia, where he teaches electronics, advanced time series processing, machine learning for remote sensing and digital signal processing. His research interests are tied to the development of machine learning algorithms for signal and image processing, with special attention to adaptive systems, neural networks and kernel methods. He conducts and supervises research on the application of these methods to remote sensing image analysis and recognition, and image denoising and coding. Dr Camps-Valls is the author (or co-author) of 50 papers in referred international journals, more than 70 international conference papers, 15 book chapters, and is editor of other related books, such as Kernel Methods in Bioengineering, Signal and Image Processing (IGI, 2007). He has served as reviewer to many international journals, and on the Program Committees of SPIE Europe, IGARSS, IWANN and ICIP. Dr Camps-Valls was a member of the European Network on Intelligent Technologies for Smart Adaptive Systems (EUNITE), and the Spanish Thematic Networks on 'Pattern Recognition' and 'Biomedical Engineering'. He is active in the R+D sector through a large number of projects funded by both public and industrial partners, both at national and international levels. He is an Evaluator of project proposals and scientific organizations. Since 2003 he has been a member of the IEEE and SPIE. Since 2009 he has been a member of the machine Learning for Signal Processing (MLSP) Technical Committee of the IEEE Signal Processing Society. Visit http://www.uv.es/gcamps for more information.

Lorenzo Bruzzone received a laurea (M.S.) degree in electronic engineering (summa cum laude) ad a Ph.D. degree in telecommunications from the University of Genoa, Italy, in 1993 and 1998, respectively. From 1998 to 2000 he was a Postdoctoral researcher at the University of Genoa. In 2000 he joined the University of Trento, Italy, where he is currently a Full Professor telecommunications. He teaches remote sensing, pattern recognition, radar and electrical communications. Dr Bruzzone is the Head of the remote Sensing Laboratory in the Department of Information Engineering and Computer Science, University of Trento. His current research interests are in the area of remote-sensing image processing and recognition (analysis of multitemporal data, feature extraction and election, classification, regression and estimation, data fusion and machine learning). He conducts and supervises research on these topics within the frameworks of several national and international projects. He is an Evaluator of project proposals for many different governments (including the European Commission) and scientific organizations. He is the author (or co-author) of 74 scientific publication in referred international journals, more than 140 papers in conference proceedings and 7 book chapters. He is a referee for many international journals and has served on the Scientific Committees of several international conferences. He is a member of the Managing Committee of the Italian Inter-University Consortium on Telecommunications and a member of the Scientific Committee of the India-Italy Center for Advanced Research. Since 2009 he has been a member of the Administrative Committee of the IEEE Geoscience and Remote Sensing Society. Dr Bruzzone gained first place in the Student Prize Paper Competition of the 1998 IEEE International Geoscience and Remote Sensing Symposium (Seattle, July 1998). He was a recipient of the Recognition of IEEE Transactions on Geoscience and remote Sensing Best reviewers in 1999 and was a Guest Editor of a Special Issue of the IEEE Transactions on Geoscience and Remote Sensing on the subject of the analysis of multitemporal remote-sensing images (November 2003). He was the General Chair and Co-chair of the First and Second IEEE International Workshop on the Analysis of Multi-temporal remote-Sensing Images (MultiTemp), and is currently a member of the Permanent Steering Committee of this series of workshops. Since 2003, he has been the Chair of the SPIE Conference on Image and Signal Processing for Remote Sensing. From 2004 to 2006 he served as an Associate Editor for the IEEE Geoscience and Remote Sensing Letters, and currently is an Associate Editor for the IEEE Transactions on Geoscience and Remote Sensing, and the Canadian Journal of Remote Sensing. He is a Senior member of IEEE, and also a member of the International Association for Pattern Recognition and of the Italian Association for Remote Sensing (AIT).

De la contraportada

Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection.

Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges:

• Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods.

• Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection.

• Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification.

• Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs.

• Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions.

This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,35 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 26,26 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Kernel Methods for Remote Sensing Data Analysis

Imagen de archivo

Camps
Publicado por Wiley, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura

Librería: Basi6 International, Irving, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-96866

Contactar al vendedor

Comprar nuevo

EUR 100,91
Convertir moneda
Gastos de envío: EUR 26,26
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

G Campsand#8211;Valls
Publicado por Wiley, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9780470722114

Contactar al vendedor

Comprar nuevo

EUR 132,17
Convertir moneda
Gastos de envío: EUR 4,93
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Wiley, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780470722114_new

Contactar al vendedor

Comprar nuevo

EUR 137,08
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Camps-valls, Gustavo (EDT); Bruzzone, Lorenzo (EDT)
Publicado por Wiley, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 5636508-n

Contactar al vendedor

Comprar nuevo

EUR 128,43
Convertir moneda
Gastos de envío: EUR 17,50
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Camps-Valls, Gustau
Publicado por John Wiley & Sons, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Gustavo Camps-Valls was born in Valencia, Spain in 1972, and received a B.Sc. degree in Physics (1996), a B.Sc. degree in Electronics Engineering (1998), and a Ph.D. degree in Physics (2002) from the Universitat de Valencia. He is currently an associate pro. Nº de ref. del artículo: 556557869

Contactar al vendedor

Comprar nuevo

EUR 127,74
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Gustau Camps-Valls
Publicado por John Wiley & Sons Inc, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 962. Nº de ref. del artículo: B9780470722114

Contactar al vendedor

Comprar nuevo

EUR 137,93
Convertir moneda
Gastos de envío: EUR 11,22
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Camps-valls, Gustavo (EDT); Bruzzone, Lorenzo (EDT)
Publicado por Wiley, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 5636508-n

Contactar al vendedor

Comprar nuevo

EUR 132,16
Convertir moneda
Gastos de envío: EUR 17,35
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Rupp, Markus
Publicado por John Wiley & Sons Inc, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura Original o primera edición

Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Editors and contributors are experts in the field of kernel methods (KMs) for remote sensing. Provides state of the art knowledge, analysing the methodological and practical challenges related to the application of KMs to remote sensing problems. Editor(s): Camps-Valls, Gustavo; Bruzzone, Lorenzo. Num Pages: 434 pages, Illustrations. BIC Classification: RGW. Category: (P) Professional & Vocational. Dimension: 248 x 176 x 29. Weight in Grams: 932. . 2009. 1st Edition. Hardcover. . . . . Nº de ref. del artículo: V9780470722114

Contactar al vendedor

Comprar nuevo

EUR 155,45
Convertir moneda
Gastos de envío: EUR 2,00
De Irlanda a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Gustau Camps-Valls
Publicado por John Wiley & Sons Inc, New York, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura Original o primera edición

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection. Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges: Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods.Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection.Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification.Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions. This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition. Editors and contributors are experts in the field of kernel methods (KMs) for remote sensing. Provides state of the art knowledge, analysing the methodological and practical challenges related to the application of KMs to remote sensing problems. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780470722114

Contactar al vendedor

Comprar nuevo

EUR 132,20
Convertir moneda
Gastos de envío: EUR 34,69
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Gustau Camps-Valls
Publicado por Wiley Dez 2009, 2009
ISBN 10: 0470722118 ISBN 13: 9780470722114
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware - Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection.Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges:\* Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods.\* Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection.\* Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification.\* Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs.\* Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions.This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition. Nº de ref. del artículo: 9780470722114

Contactar al vendedor

Comprar nuevo

EUR 157,73
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 10 copia(s) de este libro

Ver todos los resultados de su búsqueda