Unervised Learning: A Dynamic Approach (IEEE Press Series on Computational Intelligence)

0 valoración promedio
( 0 valoraciones por Goodreads )
 
9780470278338: Unervised Learning: A Dynamic Approach (IEEE Press Series on Computational Intelligence)
Ver todas las copias de esta edición ISBN.
 
 

A NEW APPROACH TO UNSUPERVISED LEARNING EVOLVING TECHNOLOGIES HAVE BROUGHT ABOUT AN EXPLOSION OF INFORMATION IN RECENT YEARS, BUT THE QUESTION OF HOW SUCH INFORMATION MIGHT BE EFFECTIVELY HARVESTED, ARCHIVED, AND ANALYZED REMAINS A MONUMENTAL CHALLENGE FOR THE PROCESSING OF SUCH INFORMATION IS OFTEN FRAUGHT WITH THE NEED FOR CONCEPTUAL INTERPRETATION: A RELATIVELY SIMPLE TASK FOR HUMANS, YET AN ARDUOUS ONE FOR COMPUTERS. INSPIRED BY THE RELATIVE SUCCESS OF EXISTING POPULAR RESEARCH ON SELF-ORGANIZING NEURAL NETWORKS FOR DATA CLUSTERING AND FEATURE EXTRACTION, UNSUPERVISED LEARNING: A DYNAMIC APPROACH PRESENTS INFORMATION WITHIN THE FAMILY OF GENERATIVE, SELF-ORGANIZING MAPS, SUCH AS THE SELF-ORGANIZING TREE MAP (SOTM) AND THE MORE ADVANCED SELF-ORGANIZING HIERARCHICAL VARIANCE MAP (SOHVM). IT COVERS A SERIES OF PERTINENT, REAL-WORLD APPLICATIONS WITH REGARD TO THE PROCESSING OF MULTIMEDIA DATA FROM ITS ROLE IN GENERIC IMAGE PROCESSING TECHNIQUES, SUCH AS THE AUTOMATED MODELING AND REMOVAL OF IMPULSE NOISE IN DIGITAL IMAGES, TO PROBLEMS IN DIGITAL ASSET MANAGEMENT AND ITS VARIOUS ROLES IN FEATURE EXTRACTION, VISUAL ENHANCEMENT, SEGMENTATION, AND ANALYSIS OF MICROBIOLOGICAL IMAGE DATA. SELF-ORGANIZATION CONCEPTS AND APPLICATIONS DISCUSSED INCLUDE: DISTANCE METRICS FOR UNSUPERVISED CLUSTERING SYNAPTIC SELF-AMPLIFICATION AND COMPETITION IMAGE RETRIEVAL IMPULSE NOISE REMOVAL MICROBIOLOGICAL IMAGE ANALYSIS UNSUPERVISED LEARNING: A DYNAMIC APPROACH INTRODUCES A NEW FAMILY OF UNSUPERVISED ALGORITHMS THAT HAVE A BASIS IN SELF-ORGANIZATION, MAKING IT AN INVALUABLE RESOURCE FOR RESEARCHERS, ENGINEERS, AND SCIENTISTS WHO WANT TO CREATE SYSTEMS THAT EFFECTIVELY MODEL OPPRESSIVE VOLUMES OF DATA WITH LITTLE OR NO USER INTERVENTION.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor:

A new approach to unsupervised learning Evolving technologies have brought about an explosion of information in recent years, but the question of how such information might be effectively harvested, archived, and analyzed remains a monumental challenge for the processing of such information is often fraught with the need for conceptual interpretation: a relatively simple task for humans, yet an arduous one for computers. Inspired by the relative success of existing popular research on self-organizing neural networks for data clustering and feature extraction, Unsupervised Learning: A Dynamic Approach presents information within the family of generative, self-organizing maps, such as the self-organizing tree map (SOTM) and the more advanced self-organizing hierarchical variance map (SOHVM). It covers a series of pertinent, real-world applications with regard to the processing of multimedia data from its role in generic image processing techniques, such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data. Self-organization concepts and applications discussed include: * Distance metrics for unsupervised clustering * Synaptic self-amplification and competition * Image retrieval * Impulse noise removal * Microbiological image analysis Unsupervised Learning: A Dynamic Approach introduces a new family of unsupervised algorithms that have a basis in self-organization, making it an invaluable resource for researchers, engineers, and scientists who want to create systems that effectively model oppressive volumes of data with little or no user intervention.

Biografía del autor:

MATTHEW KYAN received his Ph.D. in Electrical Engineering in 2007 from the University of Sydney, Australia, winning the Siemens National Prize for Innovation for his work with 3-D confocal imaging. He is currently an Assistant Professor at Ryerson University, Toronto, Canada. PAISARN MUNEESAWANG received his Ph.D. from the school of Electrical and Information Engineering at the University of Sydney in 2002. He is currently an Associate Professor at Naresuan University. KAMBIZ JARRAH received his B.Eng. (with honors) in 2004 and M.A.Sc. in 2006, both in Electrical Engineering, from Ryerson University. LING GUAN is a Canada Research Chair in Multimedia and Computer Technology and a Professor in Electrical and Computer Engineering at Ryerson University, Canada.

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

L. Guan (Ryerson University, Canada)
Publicado por John Wiley and Sons
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Cantidad disponible: > 20
Librería
INDOO
(Avenel, NJ, Estados Unidos de America)
Valoración
[?]

Descripción John Wiley and Sons. Condición: New. Brand New. Nº de ref. del artículo: 0470278331

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 88,75
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,05
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Kyan, Matthew
Publicado por John Wiley and Sons Inc (2014)
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Cantidad disponible: 1
Librería
Paperbackshop-US
(Wood Dale, IL, Estados Unidos de America)
Valoración
[?]

Descripción John Wiley and Sons Inc, 2014. HRD. Condición: New. New Book. Shipped from US within 10 to 14 business days. Established seller since 2000. Nº de ref. del artículo: KS-9780470278338

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 93,71
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,38
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Matthew Kyan, Paisarn Muneesawang, Kambiz Jarrah
Publicado por John Wiley and Sons Ltd, United States (2014)
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Tapa dura Cantidad disponible: 10
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción John Wiley and Sons Ltd, United States, 2014. Hardback. Condición: New. Language: English . Brand New Book. A new approach to unsupervised learning Evolving technologies have brought about an explosion of information in recent years, but the question of how such information might be effectively harvested, archived, and analyzed remains a monumental challenge for the processing of such information is often fraught with the need for conceptual interpretation: a relatively simple task for humans, yet an arduous one for computers. Inspired by the relative success of existing popular research on self-organizing neural networks for data clustering and feature extraction, Unsupervised Learning: A Dynamic Approach presents information within the family of generative, self-organizing maps, such as the self-organizing tree map (SOTM) and the more advanced self-organizing hierarchical variance map (SOHVM). It covers a series of pertinent, real-world applications with regard to the processing of multimedia data from its role in generic image processing techniques, such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data. Self-organization concepts and applications discussed include: * Distance metrics for unsupervised clustering * Synaptic self-amplification and competition * Image retrieval * Impulse noise removal * Microbiological image analysis Unsupervised Learning: A Dynamic Approach introduces a new family of unsupervised algorithms that have a basis in self-organization, making it an invaluable resource for researchers, engineers, and scientists who want to create systems that effectively model oppressive volumes of data with little or no user intervention. Nº de ref. del artículo: AAH9780470278338

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 100,92
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Matthew Kyan, Paisarn Muneesawang, Kambiz Jarrah
Publicado por John Wiley and Sons Ltd, United States (2014)
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Tapa dura Cantidad disponible: 10
Librería
Book Depository International
(London, Reino Unido)
Valoración
[?]

Descripción John Wiley and Sons Ltd, United States, 2014. Hardback. Condición: New. Language: English . Brand New Book. A new approach to unsupervised learning Evolving technologies have brought about an explosion of information in recent years, but the question of how such information might be effectively harvested, archived, and analyzed remains a monumental challenge for the processing of such information is often fraught with the need for conceptual interpretation: a relatively simple task for humans, yet an arduous one for computers. Inspired by the relative success of existing popular research on self-organizing neural networks for data clustering and feature extraction, Unsupervised Learning: A Dynamic Approach presents information within the family of generative, self-organizing maps, such as the self-organizing tree map (SOTM) and the more advanced self-organizing hierarchical variance map (SOHVM). It covers a series of pertinent, real-world applications with regard to the processing of multimedia data from its role in generic image processing techniques, such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data. Self-organization concepts and applications discussed include: * Distance metrics for unsupervised clustering * Synaptic self-amplification and competition * Image retrieval * Impulse noise removal * Microbiological image analysis Unsupervised Learning: A Dynamic Approach introduces a new family of unsupervised algorithms that have a basis in self-organization, making it an invaluable resource for researchers, engineers, and scientists who want to create systems that effectively model oppressive volumes of data with little or no user intervention. Nº de ref. del artículo: AAH9780470278338

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 101,11
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Kyan, Matthew
Publicado por Wileyand#8211;Blackwell (2014)
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Cantidad disponible: > 20
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción Wileyand#8211;Blackwell, 2014. HRD. Condición: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. del artículo: FW-9780470278338

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 92,00
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 10,26
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Matthew Kyan, Paisarn Muneesawang, Kambiz Jarrah, Ling Guan
Publicado por Wiley 2014-06-03, Piscataway, NJ :|Hoboken, New Jersey (2014)
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Tapa dura Cantidad disponible: > 20
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción Wiley 2014-06-03, Piscataway, NJ :|Hoboken, New Jersey, 2014. hardback. Condición: New. Nº de ref. del artículo: 9780470278338

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 105,08
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,84
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Matthew Kyan
Publicado por John Wiley and Sons Ltd
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Tapa dura Cantidad disponible: > 20
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción John Wiley and Sons Ltd. Hardback. Condición: New. New copy - Usually dispatched within 2 working days. Nº de ref. del artículo: B9780470278338

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 105,48
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 7,91
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Matthew Kyan, Paisarn Muneesawang, Kambiz Jarrah
Publicado por John Wiley and Sons Ltd, United States (2014)
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Tapa dura Cantidad disponible: 10
Librería
Book Depository hard to find
(London, Reino Unido)
Valoración
[?]

Descripción John Wiley and Sons Ltd, United States, 2014. Hardback. Condición: New. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. A new approach to unsupervised learning Evolving technologies have brought about an explosion of information in recent years, but the question of how such information might be effectively harvested, archived, and analyzed remains a monumental challenge for the processing of such information is often fraught with the need for conceptual interpretation: a relatively simple task for humans, yet an arduous one for computers. Inspired by the relative success of existing popular research on self-organizing neural networks for data clustering and feature extraction, Unsupervised Learning: A Dynamic Approach presents information within the family of generative, self-organizing maps, such as the self-organizing tree map (SOTM) and the more advanced self-organizing hierarchical variance map (SOHVM). It covers a series of pertinent, real-world applications with regard to the processing of multimedia data from its role in generic image processing techniques, such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data. Self-organization concepts and applications discussed include: * Distance metrics for unsupervised clustering * Synaptic self-amplification and competition * Image retrieval * Impulse noise removal * Microbiological image analysis Unsupervised Learning: A Dynamic Approach introduces a new family of unsupervised algorithms that have a basis in self-organization, making it an invaluable resource for researchers, engineers, and scientists who want to create systems that effectively model oppressive volumes of data with little or no user intervention. Nº de ref. del artículo: BZV9780470278338

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 123,28
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Guan, L.
Publicado por IEEE (2014)
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Tapa dura Cantidad disponible: 1
Librería
Revaluation Books
(Exeter, Reino Unido)
Valoración
[?]

Descripción IEEE, 2014. Hardcover. Condición: Brand New. 273 pages. 9.25x6.25x0.80 inches. In Stock. Nº de ref. del artículo: z-0470278331

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 123,96
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,83
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Matthew Kyan; Paisarn Muneesawang; Kambiz Jarrah; Ling Guan
Publicado por Wiley-IEEE Press (2014)
ISBN 10: 0470278331 ISBN 13: 9780470278338
Nuevo Tapa dura Original o primera edición Cantidad disponible: 1
Librería
Irish Booksellers
(Portland, ME, Estados Unidos de America)
Valoración
[?]

Descripción Wiley-IEEE Press, 2014. Condición: New. book. Nº de ref. del artículo: M0470278331

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 134,73
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda