Many problems for partial difference and integro-difference equations can be written as difference equations in a normed space. This book is devoted to linear and nonlinear difference equations in a normed space. Our aim in this monograph is to initiate systematic investigations of the global behavior of solutions of difference equations in a normed space. Our primary concern is to study the asymptotic stability of the equilibrium solution. We are also interested in the existence of periodic and positive solutions. There are many books dealing with the theory of ordinary difference equations. However there are no books dealing systematically with difference equations in a normed space. It is our hope that this book will stimulate interest among mathematicians to develop the stability theory of abstract difference equations. Note that even for ordinary difference equations, the problem of stability analysis continues to attract the attention of many specialists despite its long history. It is still one of the most burning problems, because of the absence of its complete solution, but many general results available for ordinary difference equations (for example, stability by linear approximation) may be easily proved for abstract difference equations. The main methodology presented in this publication is based on a combined use of recent norm estimates for operator-valued functions with the following methods and results: a) the freezing method; b) the Liapunov type equation; c) the method of majorants; d) the multiplicative representation of solutions. In addition, we present stability results for abstract Volterra discrete equations. The book consists of 22 chapters and an appendix. In Chapter 1, some definitions and preliminary results are collected. They are systematically used in the next chapters
"Sinopsis" puede pertenecer a otra edición de este libro.
Many problems for partial difference and integro-difference equations can be written as difference equations in a normed space. This book is devoted to linear and nonlinear difference equations in a normed space. Our aim in this monograph is to initiate systematic investigations of the global behavior of solutions of difference equations in a normed space. Our primary concern is to study the asymptotic stability of the equilibrium solution. We are also interested in the existence of periodic and positive solutions. There are many books dealing with the theory of ordinary difference equations. However there are no books dealing systematically with difference equations in a normed space. It is our hope that this book will stimulate interest among mathematicians to develop the stability theory of abstract difference equations. Note that even for ordinary difference equations, the problem of stability analysis continues to attract the attention of many specialists despite its long history. It is still one of the most burning problems, because of the absence of its complete solution, but many general results available for ordinary difference equations (for example, stability by linear approximation) may be easily proved for abstract difference equations. The main methodology presented in this publication is based on a combined use of recent norm estimates for operator-valued functions with the following methods and results: a) the freezing method; b) the Liapunov type equation; c) the method of majorants; d) the multiplicative representation of solutions. In addition, we present stability results for abstract Volterra discrete equations. The book consists of 22 chapters and an appendix. In Chapter 1, some definitions and preliminary results are collected. They are systematically used in the next chapters
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,67 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 378 pages. 9.64x6.69x0.86 inches. In Stock. Nº de ref. del artículo: zk0444550739
Cantidad disponible: 1 disponibles