Artículos relacionados a Knowledge Graph-Based Methods for Automated Driving

Knowledge Graph-Based Methods for Automated Driving - Tapa blanda

 
9780443300400: Knowledge Graph-Based Methods for Automated Driving

Sinopsis

The global race to develop and deploy automated vehicles is still hindered by significant challenges, with the related complexities requiring multidisciplinary research approaches. Knowledge Graph-Based Methods for Automated Driving offers sought-after, specialized know-how for a wide range of readers both in academia and industry on the use of graphs as knowledge representation techniques which, compared to other relational models, provide a number of advantages for data-driven applications like automated driving tasks. The machine learning pipeline presented in this volume incorporates a variety of auxiliary information, including logic rules, ontology-informed workflows, simulation outcomes, differential equations, and human input, with the resulting operational framework being more reliable, secure, efficient as well as sustainable. Case studies and other practical discussions exemplify these methods’ promising and exciting prospects for the maturation of scalable solutions with potential to transform transport and logistics worldwide.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca de los autores

Dr. Rajesh Kumar Dhanaraj is a professor at the Symbiosis International (Deemed University) in Pune, India. His research and publication interests include cyber-physical systems, wireless sensor networks, and cloud computing. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE), a member of the Computer Science Teacher Association (CSTA) and member of the International Association of Engineers (IAENG). He is an expert advisory panel member of Texas Instruments Inc. (USA), and an associate editor of International Journal of Pervasive Computing and Communications (Emerald Publishing).

Dr. Nalini holds a PhD in Electronics and Communication Engineering from Sri Chandrasekarendra Saraswathi Viswa Maha Vidyalaya, Kanchipuram, India. Her research and publication interests include Artificial Intelligence, biomedical engineering, wireless sensor networks, and Internet of Things. She holds two patents in India and has received a grant to submit another application through the AICTE Quality Improvement Schemes supported by the Gvt. of India.



Dr. Malathy holds a PhD in Information and Communication Engineering from Anna University, Chennai, India. Her research areas include wireless sensor networks, Internet of Things, and applied machine learning. She is a life member of the Indian Society for Technical Education (ISTE) and the International Association of Engineers (IAENG). She is an active author/editor for Springer, CRC Press, and Elsevier. She is also a reviewer for Wireless Networks (Springer) and on the editorial board at many international conferences.



Dr. Mohaisen received a Master’s degree in Communications and Signal Processing from the University of Nice Sophia Antipolis, Nice, France, in 2005, and a PhD in Communications Engineering from Inha University, Incheon, South Korea, in 2010. From 2001 to 2004, he worked as a Cell Planning Engineer with the Palestinian Telecommunications Company, Nablus, Palestine. From 2010 to 2019, he was a full-time Lecturer and an Assistant Professor with the Dept. of EEC Engineering Korea Tech, Cheonan, South Korea. He is currently an Associate Professor with the Department of Computer Science, Northeastern Illinois University, Chicago, IL, USA. His research interests include wireless communications with a focus on MIMO systems, systems and internet security, AI applications to security, and social network analysis.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,43 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Knowledge Graph-Based Methods for Automated Driving

Imagen de archivo

Dhanaraj, Rajesh Kumar (Editor)/ Nalini, M. (Editor)/ Sathyamoorthy, Malathy (Editor)/ Mohaisen, Manar (Editor)
Publicado por Elsevier Science Ltd, 2025
ISBN 10: 0443300402 ISBN 13: 9780443300400
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 400 pages. 9.00x6.00 inches. In Stock. Nº de ref. del artículo: __0443300402

Contactar al vendedor

Comprar nuevo

EUR 216,03
Convertir moneda
Gastos de envío: EUR 11,43
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

ISBN 10: 0443300402 ISBN 13: 9780443300400
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Brook Bookstore On Demand, Napoli, NA, Italia

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: UH2UDHXZIT

Contactar al vendedor

Comprar nuevo

EUR 189,76
Convertir moneda
Gastos de envío: EUR 40,00
De Italia a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Rajesh Kumar Dhanaraj
ISBN 10: 0443300402 ISBN 13: 9780443300400
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. The global race to develop and deploy automated vehicles is still hindered by significant challenges, with the related complexities requiring multidisciplinary research approaches.Knowledge Graph-Based Methods for Automated Driving offers sought-after, specialized know-how for a wide range of readers both in academia and industry on the use of graphs as knowledge representation techniques which, compared to other relational models, provide a number of advantages for data-driven applications like automated driving tasks. The machine learning pipeline presented in this volume incorporates a variety of auxiliary information, including logic rules, ontology-informed workflows, simulation outcomes, differential equations, and human input, with the resulting operational framework being more reliable, secure, efficient as well as sustainable.Case studies and other practical discussions exemplify these methods promising and exciting prospects for the maturation of scalable solutions with potential to transform transport and logistics worldwide. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780443300400

Contactar al vendedor

Comprar nuevo

EUR 204,26
Convertir moneda
Gastos de envío: EUR 34,29
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito