This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 12,57 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 4,72 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Richard Roberts Bookseller., KILMARNOCK, Reino Unido
1st. Edn. Paperback. pp. viii, 137. Front cover creased at top corner, else a very good clean and sound copy. Nº de ref. del artículo: 2189
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,300grams, ISBN:0412233401. Nº de ref. del artículo: 5839939
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780412233401_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved su. Nº de ref. del artículo: 5914296
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included. Nº de ref. del artículo: 9780412233401
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 232. Nº de ref. del artículo: C9780412233401
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch. Nº de ref. del artículo: 9780412233401
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 148. Nº de ref. del artículo: 2697505679
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 148 25:B&W 5.83 x 8.27 in or 210 x 148 mm (A5) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 95972944
Cantidad disponible: 4 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included. 148 pp. Englisch. Nº de ref. del artículo: 9780412233401
Cantidad disponible: 2 disponibles