The exponential increase in the use of MCMC methods and the corre sponding applications in domains of even higher complexity have caused a growing concern about the available convergence assessment methods and the realization that some of these methods were not reliable enough for all-purpose analyses. Some researchers have mainly focussed on the con vergence to stationarity and the estimation of rates of convergence, in rela tion with the eigenvalues of the transition kernel. This monograph adopts a different perspective by developing (supposedly) practical devices to assess the mixing behaviour of the chain under study and, more particularly, it proposes methods based on finite (state space) Markov chains which are obtained either through a discretization of the original Markov chain or through a duality principle relating a continuous state space Markov chain to another finite Markov chain, as in missing data or latent variable models. The motivation for the choice of finite state spaces is that, although the resulting control is cruder, in the sense that it can often monitor con vergence for the discretized version alone, it is also much stricter than alternative methods, since the tools available for finite Markov chains are universal and the resulting transition matrix can be estimated more accu rately. Moreover, while some setups impose a fixed finite state space, other allow for possible refinements in the discretization level and for consecutive improvements in the convergence monitoring.
"Sinopsis" puede pertenecer a otra edición de este libro.
The exponential increase in the use of MCMC methods and the corre sponding applications in domains of even higher complexity have caused a growing concern about the available convergence assessment methods and the realization that some of these methods were not reliable enough for all-purpose analyses. Some researchers have mainly focussed on the con vergence to stationarity and the estimation of rates of convergence, in rela tion with the eigenvalues of the transition kernel. This monograph adopts a different perspective by developing (supposedly) practical devices to assess the mixing behaviour of the chain under study and, more particularly, it proposes methods based on finite (state space) Markov chains which are obtained either through a discretization of the original Markov chain or through a duality principle relating a continuous state space Markov chain to another finite Markov chain, as in missing data or latent variable models. The motivation for the choice of finite state spaces is that, although the resulting control is cruder, in the sense that it can often monitor con vergence for the discretized version alone, it is also much stricter than alternative methods, since the tools available for finite Markov chains are universal and the resulting transition matrix can be estimated more accu rately. Moreover, while some setups impose a fixed finite state space, other allow for possible refinements in the discretization level and for consecutive improvements in the convergence monitoring.
This monograph proposes several approaches to convergence monitoring for MCMC algorithms which are centered on the theme of discrete Markov chains. After a short introduction to MCMC methods, including recent developments like perfect simulation and Langevin Metropolis-Hastings algorithms, and to the current convergence diagnostics, the contributors present the theoretical basis for a study of MCMC convergence using discrete Markov chains and their specificities. The contributors stress in particular that this study applies in a wide generality, starting with latent variable models like mixtures, then extending the scope to chains with renewal properties, and concluding with a general Markov chain. They then relate the different connections with discrete or finite Markov chains with practical convergence diagnostics which are either graphical plots (allocation map, divergence graph, variance stabilizing, normality plot), stopping rules (normality, stationarity, stability tests), or confidence bounds (divergence, asymptotic variance, normality). Most of the quantitative tools take advantage of manageable versions of the CLT. The different methods proposed here are first evaluated on a set of benchmark examples and then studied on three full scale realistic applications, along with the standard convergence diagnostics: A hidden Markov modelling of DNA sequences, including a perfect simulation implementation, a latent stage modelling of the dynamics of HIV infection, and a modelling of hospitalization duration by exponential mixtures. The monograph is the outcome of a monthly research seminar held at CREST, Paris, since 1995. The seminar involved the contributors to this monograph and was led by Christian P. Robert, Head of the Satistics Laboratory at CREST and Professor of Statistics at the University of Rouen since 1992.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
1. print. Ehemaliges Bibliotheksexemplar mit Stempel innen und Bibliothekssignatur auf Einband in gutem Zustand. Ex-library with stamp and catalogue number on spine. GOOD condition, some traces of use. Sh 628 9780387985916 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2080146
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 231297/3
Cantidad disponible: 1 disponibles
Librería: Metakomet Books, Concord, MA, Estados Unidos de America
Paperback. Condición: Very Good. A touch of edgewear, with some light fading tospine. No. "1031" written at top edge, inside front cover. Otherwise, appears new,unread. Very clean and bright with sound binding. Part of series Lecture Notes in Statistics, # 135. 192 pgs. Nº de ref. del artículo: red1aMCMC
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Nº de ref. del artículo: 5913389
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The exponential increase in the use of MCMC methods and the corre sponding applications in domains of even higher complexity have caused a growing concern about the available convergence assessment methods and the realization that some of these methods were not reliable enough for all-purpose analyses. Some researchers have mainly focussed on the con vergence to stationarity and the estimation of rates of convergence, in rela tion with the eigenvalues of the transition kernel. This monograph adopts a different perspective by developing (supposedly) practical devices to assess the mixing behaviour of the chain under study and, more particularly, it proposes methods based on finite (state space) Markov chains which are obtained either through a discretization of the original Markov chain or through a duality principle relating a continuous state space Markov chain to another finite Markov chain, as in missing data or latent variable models. The motivation for the choice of finite state spaces is that, although the resulting control is cruder, in the sense that it can often monitor con vergence for the discretized version alone, it is also much stricter than alternative methods, since the tools available for finite Markov chains are universal and the resulting transition matrix can be estimated more accu rately. Moreover, while some setups impose a fixed finite state space, other allow for possible refinements in the discretization level and for consecutive improvements in the convergence monitoring. 208 pp. Englisch. Nº de ref. del artículo: 9780387985916
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387985916_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The exponential increase in the use of MCMC methods and the corre sponding applications in domains of even higher complexity have caused a growing concern about the available convergence assessment methods and the realization that some of these methods were not reliable enough for all-purpose analyses. Some researchers have mainly focussed on the con vergence to stationarity and the estimation of rates of convergence, in rela tion with the eigenvalues of the transition kernel. This monograph adopts a different perspective by developing (supposedly) practical devices to assess the mixing behaviour of the chain under study and, more particularly, it proposes methods based on finite (state space) Markov chains which are obtained either through a discretization of the original Markov chain or through a duality principle relating a continuous state space Markov chain to another finite Markov chain, as in missing data or latent variable models. The motivation for the choice of finite state spaces is that, although the resulting control is cruder, in the sense that it can often monitor con vergence for the discretized version alone, it is also much stricter than alternative methods, since the tools available for finite Markov chains are universal and the resulting transition matrix can be estimated more accu rately. Moreover, while some setups impose a fixed finite state space, other allow for possible refinements in the discretization level and for consecutive improvements in the convergence monitoring. Nº de ref. del artículo: 9780387985916
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The exponential increase in the use of MCMC methods and the corre sponding applications in domains of even higher complexity have caused a growing concern about the available convergence assessment methods and the realization that some of these methods were not reliable enough for all-purpose analyses. Some researchers have mainly focussed on the con vergence to stationarity and the estimation of rates of convergence, in rela tion with the eigenvalues of the transition kernel. This monograph adopts a different perspective by developing (supposedly) practical devices to assess the mixing behaviour of the chain under study and, more particularly, it proposes methods based on finite (state space) Markov chains which are obtained either through a discretization of the original Markov chain or through a duality principle relating a continuous state space Markov chain to another finite Markov chain, as in missing data or latent variable models. The motivation for the choice of finite state spaces is that, although the resulting control is cruder, in the sense that it can often monitor con vergence for the discretized version alone, it is also much stricter than alternative methods, since the tools available for finite Markov chains are universal and the resulting transition matrix can be estimated more accu rately. Moreover, while some setups impose a fixed finite state space, other allow for possible refinements in the discretization level and for consecutive improvements in the convergence monitoring.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 208 pp. Englisch. Nº de ref. del artículo: 9780387985916
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 690. Nº de ref. del artículo: C9780387985916
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 208. Nº de ref. del artículo: 263093750
Cantidad disponible: 4 disponibles