Book by Zeidler E
"Sinopsis" puede pertenecer a otra edición de este libro.
This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Gebunden. Condición: New. Nº de ref. del artículo: 5912934
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387971674_new
Cantidad disponible: Más de 20 disponibles
Librería: BennettBooksLtd, North Las Vegas, NV, Estados Unidos de America
library. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-038797167X
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book continues the treatment of the arithmetic theory of elliptic curves begun in the first volume. The book begins with the theory of elliptic and modular functions for the full modular group r(1), including a discussion of Hekcke operators and the L-series associated to cusp forms. This is followed by a detailed study of elliptic curves with complex multiplication, their associated Grössencharacters and L-series, and applications to the construction of abelian extensions of quadratic imaginary fields. Next comes a treatment of elliptic curves over function fields and elliptic surfaces, including specialization theorems for heights and sections. This material serves as a prelude to the theory of minimal models and Néron models of elliptic curves, with a discussion of special fibers, conductors, and Ogg's formula. Next comes a brief description of q-models for elliptic curves over C and R, followed by Tate's theory of q-models for elliptic curves with non-integral j-invariant over p-adic fields. The book concludes with the construction of canonical local height functions on elliptic curves, including explicit formulas for both archimedean and non-archimedean fields. 756 pp. Englisch. Nº de ref. del artículo: 9780387971674
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book continues the treatment of the arithmetic theory of elliptic curves begun in the first volume. The book begins with the theory of elliptic and modular functions for the full modular group r(1), including a discussion of Hekcke operators and the L-series associated to cusp forms. This is followed by a detailed study of elliptic curves with complex multiplication, their associated Grössencharacters and L-series, and applications to the construction of abelian extensions of quadratic imaginary fields. Next comes a treatment of elliptic curves over function fields and elliptic surfaces, including specialization theorems for heights and sections. This material serves as a prelude to the theory of minimal models and Néron models of elliptic curves, with a discussion of special fibers, conductors, and Ogg's formula. Next comes a brief description of q-models for elliptic curves over C and R, followed by Tate's theory of q-models for elliptic curves with non-integral j-invariant over p-adic fields. The book concludes with the construction of canonical local height functions on elliptic curves, including explicit formulas for both archimedean and non-archimedean fields. Nº de ref. del artículo: 9780387971674
Cantidad disponible: 1 disponibles