FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
"Sinopsis" puede pertenecer a otra edición de este libro.
FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 9,22 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 5,93 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Better World Books Ltd, Dunfermline, Reino Unido
Condición: Good. Ships from the UK. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 8904540-6
Cantidad disponible: 1 disponibles
Librería: harvardyard, Northfield, MN, Estados Unidos de America
Hardcover. Condición: As New. Nº de ref. del artículo: 8-11-18-NA-96m
Cantidad disponible: 1 disponibles
Librería: Feldman's Books, Menlo Park, CA, Estados Unidos de America
Hardcover. Condición: Fine. First Edition. Nº de ref. del artículo: 00030193
Cantidad disponible: 1 disponibles
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
Condición: Very Good. Nº de ref. del artículo: 025411
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. Volume 74. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,650grams, ISBN:038796908X. Nº de ref. del artículo: 5571270
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bernhardt, Kassel, Alemania
Karton. Condición: Sehr gut. Zust: Gutes Exemplar. 278 Seiten Englisch 562g. Nº de ref. del artículo: 483940
Cantidad disponible: 1 disponibles
Librería: BennettBooksLtd, North Las Vegas, NV, Estados Unidos de America
hardcover. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-038796908X
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9780387969084
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580174901
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387969084_new
Cantidad disponible: Más de 20 disponibles