Statistical mechanics may be naturally divided into two branches, one dealing with equilibrium systems, the other with nonequilibrium systems. The equilibrium properties of macroscopic systems are defined in principle by suitable averages in well-defined Gibbs's ensembles. This provides a frame work for both qualitative understanding and quantitative approximations to equilibrium behaviour. Nonequilibrium phenomena are much less understood at the present time. A notable exception is offered by the case of dilute gases. Here a basic equation was established by Ludwig Boltzmann in 1872. The Boltzmann equation still forms the basis for the kinetic theory of gases and has proved fruitful not only for a study of the classical gases Boltzmann had in mind but also, properly generalized, for studying electron transport in solids and plasmas, neutron transport in nuclear reactors, phonon transport in superfluids, and radiative transfer in planetary and stellar atmospheres. Research in both the new fields and the old one has undergone a considerable advance in the last thirty years.
"Sinopsis" puede pertenecer a otra edición de este libro.
Statistical mechanics may be naturally divided into two branches, one dealing with equilibrium systems, the other with nonequilibrium systems. The equilibrium properties of macroscopic systems are defined in principle by suitable averages in well-defined Gibbs's ensembles. This provides a frame work for both qualitative understanding and quantitative approximations to equilibrium behaviour. Nonequilibrium phenomena are much less understood at the present time. A notable exception is offered by the case of dilute gases. Here a basic equation was established by Ludwig Boltzmann in 1872. The Boltzmann equation still forms the basis for the kinetic theory of gases and has proved fruitful not only for a study of the classical gases Boltzmann had in mind but also, properly generalized, for studying electron transport in solids and plasmas, neutron transport in nuclear reactors, phonon transport in superfluids, and radiative transfer in planetary and stellar atmospheres. Research in both the new fields and the old one has undergone a considerable advance in the last thirty years.
This book gives a complete exposition of the present status of the theory of the Boltzmann equation and its applications. The Boltzmann equation, an integrodifferential equation established by Boltzmann in 1872 to describe the state of a dilute gas, still forms the basis for the kinetic theory of gases. It has proved fruitful not only for the study of the classical gases Boltzmann had in mind, but also, properly generalized, for electron transport in nuclear reactors, photon transport in superfluids, and radiative transport in planetary and stellar atmospheres. The text presents a unified approach to the problems arising in these different fields, by exploiting similarities whenever they exist and underlining the differences when necessary. But the main exposition is tied to the classical equation established by Boltzmann. Hence the detailed description of applications refers almost exclusively to monatomic neutral gases. Appropiate references are given to papers dealing with similar problems arising in other fields, with particular concern for neutron transport. A unique feature is the detailed consideration of the boundary conditions to be used in connection with the Boltzmann equation. Other topics covered in detail are the derivation of the Boltzmann equation from first principles, the theory of the linearized Boltzmann equation, the use of model equations, and the various regimes of rarefied gas dynamics. In addition to updating the material to 1987, the main improvement over the previous book of the author, "Theory and Application of the Boltzmann equation" is the detailed survey of the use of the techniques of functional analysis in connection with the nonlinear Boltzmann equation, a subject which has greatly progressed in the last ten years.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,64 gastos de envío desde Japon a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Infinity Books Japan, Tokyo, TKY, Japon
Hardcover. Condición: Very Good. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Statistical mechanics may be naturally divided into two branches, one dealing with equilibrium systems, the other with nonequilibrium systems. The equilibrium properties of macroscopic systems are defined in principle by suitable averages in well-defined Gibbs's ensembles. This provides a frame work for both qualitative understanding and quantitative approximations to equilibrium behaviour. Nonequilibrium phenomena are much less understood at the present time. A notable exception is offered by the case of dilute gases. Here a basic equation was established by Ludwig Boltzmann in 1872. The Boltzmann equation still forms the basis for the kinetic theory of gases and has proved fruitful not only for a study of the classical gases Boltzmann had in mind but also, properly generalized, for studying electron transport in solids and plasmas, neutron transport in nuclear reactors, phonon transport in superfluids, and radiative transfer in planetary and stellar atmospheres. Research in both the new fields and the old one has undergone a considerable advance in the last thirty years. Nº de ref. del artículo: RWARE0000062236
Cantidad disponible: 1 disponibles
Librería: ThriftBooksVintage, Tukwila, WA, Estados Unidos de America
Hardcover. Condición: Very Good. No Jacket. First printing. Minor shelf and handling wear, overall a clean solid copy with minimal signs of use. Light wear to rear cover. Internally clean, with a tight binding. Secure packaging for safe delivery. 1.94. Nº de ref. del artículo: 1576211076
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Statistical mechanics may be naturally divided into two branches, one dealing with equilibrium systems, the other with nonequilibrium systems. The equilibrium properties of macroscopic systems are defined in principle by suitable averages in well-defined Gi. Nº de ref. del artículo: 5912785
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Statistical mechanics may be naturally divided into two branches, one dealing with equilibrium systems, the other with nonequilibrium systems. The equilibrium properties of macroscopic systems are defined in principle by suitable averages in well-defined Gibbs's ensembles. This provides a frame work for both qualitative understanding and quantitative approximations to equilibrium behaviour. Nonequilibrium phenomena are much less understood at the present time. A notable exception is offered by the case of dilute gases. Here a basic equation was established by Ludwig Boltzmann in 1872. The Boltzmann equation still forms the basis for the kinetic theory of gases and has proved fruitful not only for a study of the classical gases Boltzmann had in mind but also, properly generalized, for studying electron transport in solids and plasmas, neutron transport in nuclear reactors, phonon transport in superfluids, and radiative transfer in planetary and stellar atmospheres. Research in both the new fields and the old one has undergone a considerable advance in the last thirty years. 476 pp. Englisch. Nº de ref. del artículo: 9780387966373
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387966373_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Statistical mechanics may be naturally divided into two branches, one dealing with equilibrium systems, the other with nonequilibrium systems. The equilibrium properties of macroscopic systems are defined in principle by suitable averages in well-defined Gibbs's ensembles. This provides a frame work for both qualitative understanding and quantitative approximations to equilibrium behaviour. Nonequilibrium phenomena are much less understood at the present time. A notable exception is offered by the case of dilute gases. Here a basic equation was established by Ludwig Boltzmann in 1872. The Boltzmann equation still forms the basis for the kinetic theory of gases and has proved fruitful not only for a study of the classical gases Boltzmann had in mind but also, properly generalized, for studying electron transport in solids and plasmas, neutron transport in nuclear reactors, phonon transport in superfluids, and radiative transfer in planetary and stellar atmospheres. Research in both the new fields and the old one has undergone a considerable advance in the last thirty years. Nº de ref. del artículo: 9780387966373
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9780387966373
Cantidad disponible: Más de 20 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77303879663746
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -Statistical mechanics may be naturally divided into two branches, one dealing with equilibrium systems, the other with nonequilibrium systems. The equilibrium properties of macroscopic systems are defined in principle by suitable averages in well-defined Gibbs's ensembles. This provides a frame work for both qualitative understanding and quantitative approximations to equilibrium behaviour. Nonequilibrium phenomena are much less understood at the present time. A notable exception is offered by the case of dilute gases. Here a basic equation was established by Ludwig Boltzmann in 1872. The Boltzmann equation still forms the basis for the kinetic theory of gases and has proved fruitful not only for a study of the classical gases Boltzmann had in mind but also, properly generalized, for studying electron transport in solids and plasmas, neutron transport in nuclear reactors, phonon transport in superfluids, and radiative transfer in planetary and stellar atmospheres. Research in both the new fields and the old one has undergone a considerable advance in the last thirty years.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch. Nº de ref. del artículo: 9780387966373
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580174827
Cantidad disponible: Más de 20 disponibles