The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC", including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods.
"Sinopsis" puede pertenecer a otra edición de este libro.
The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC", including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods.
This is an introductory text in several complex variables, using methods of integral representations. It begins with elementary local results, discusses basic new concepts of the multi-dimensional theory such as pseudoconvexity and holomorphic convexity, and leads up to complete proofs of fundamental global results, both classical and new. The use of integral representation techniques makes it possible to treat the subject with a minimum of prerequisites, and it has the further advantage that it uses the multivariable forms of theorem with which the students are already acquainted. This book also provides a systematic introduction to integral representation methods and their applications, including a simplified proof of C. Fefferman's famous mapping theorem.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,00 gastos de envío desde Italia a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Libreria sottomarina - Studio Bibliografico, ROMA, RM, Italia
rilegato. Condición: Perfetto (Mint). Book. Nº de ref. del artículo: cz02aTEK
Cantidad disponible: 1 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 5065354-6
Cantidad disponible: 1 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Nº de ref. del artículo: 16011777-6
Cantidad disponible: 1 disponibles
Librería: Fireside Bookshop, Stroud, GLOS, Reino Unido
Cloth/Laminated Boards. Condición: Very Good. Type: Book N.B. Small label to ffep. Some foxing to page edges. Nº de ref. del artículo: 051767
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of complex convexity related to the remarkable ex. Nº de ref. del artículo: 5912699
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of 'complex convexity' related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC', including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods. 416 pp. Englisch. Nº de ref. del artículo: 9780387962597
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387962597_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of 'complex convexity' related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC', including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods. Nº de ref. del artículo: 9780387962597
Cantidad disponible: 1 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_363639261
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 788. Nº de ref. del artículo: C9780387962597
Cantidad disponible: Más de 20 disponibles