This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, and U-shaped. The book is addressed to students, researchers, and practitioners in statistics and applied probability. Most of the results are recent, and a significant part of them has not been published yet. Numerous open problems are stated in the text.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, and U-shaped. The book is addressed to students, researchers, and practitioners in statistics and applied probability. Most of the results are recent, and a significant part of them has not been published yet. Numerous open problems are stated in the text.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,00 gastos de envío desde Francia a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Ammareal, Morangis, Francia
Softcover. Condición: Très bon. Ancien livre de bibliothèque. Petite(s) trace(s) de pliure sur la couverture. Edition 2001. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Slightly creased cover. Edition 2001. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: E-812-905
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 192 | Sprache: Englisch | Produktart: Sonstiges. Nº de ref. del artículo: 736210/202
Cantidad disponible: 1 disponibles
Librería: Munster & Company LLC, ABAA/ILAB, Corvallis, OR, Estados Unidos de America
Paperback. Condición: Very Good. New York, Berlin, Heidelberg: Springer-Verlag, 2001. 175 pp. 23.5 x 15.5 cm. Very light rubbing to cover; sunning to spine. Interior is clean and unmarked; binding is firm. Soft Cover. Very Good. 8vo - over 7¾" - 9¾" tall. Nº de ref. del artículo: 625076
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, a. Nº de ref. del artículo: 5912414
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387952390_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, and U-shaped. The book is addressed to students, researchers, and practitioners in statistics and applied probability. Most of the results are recent, and a significant part of them has not been published yet. Numerous open problems are stated in the text. 192 pp. Englisch. Nº de ref. del artículo: 9780387952390
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - About 10 years ago I began studying evaluations of distributions of or der statistics from samples with general dependence structure. Analyzing in [78] deterministic inequalities for arbitrary linear combinations of order statistics expressed in terms of sample moments, I observed that we obtain the optimal bounds once we replace the vectors of original coefficients of the linear combinations by the respective Euclidean norm projections onto the convex cone of vectors with nondecreasing coordinates. I further veri fied that various optimal evaluations of order and record statistics, derived earlier by use of diverse techniques, may be expressed by means of projec tions. In Gajek and Rychlik [32], we formulated for the first time an idea of applying projections onto convex cones for determining accurate moment bounds on the expectations of order statistics. Also for the first time, we presented such evaluations for non parametric families of distributions dif ferent from families of arbitrary, symmetric, and nonnegative distributions. We realized that this approach makes it possible to evaluate various func tionals of great importance in applied probability and statistics in different restricted families of distributions. The purpose of this monograph is to present the method of using pro jections of elements of functional Hilbert spaces onto convex cones for es tablishing optimal mean-variance bounds of statistical functionals, and its wide range of applications. This is intended for students, researchers, and practitioners in probability, statistics, and reliability. Nº de ref. del artículo: 9780387952390
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 308. Nº de ref. del artículo: C9780387952390
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -About 10 years ago I began studying evaluations of distributions of or der statistics from samples with general dependence structure. Analyzing in [78] deterministic inequalities for arbitrary linear combinations of order statistics expressed in terms of sample moments, I observed that we obtain the optimal bounds once we replace the vectors of original coefficients of the linear combinations by the respective Euclidean norm projections onto the convex cone of vectors with nondecreasing coordinates. I further veri fied that various optimal evaluations of order and record statistics, derived earlier by use of diverse techniques, may be expressed by means of projec tions. In Gajek and Rychlik [32], we formulated for the first time an idea of applying projections onto convex cones for determining accurate moment bounds on the expectations of order statistics. Also for the first time, we presented such evaluations for non parametric families of distributions dif ferent from families of arbitrary, symmetric, and nonnegative distributions. We realized that this approach makes it possible to evaluate various func tionals of great importance in applied probability and statistics in different restricted families of distributions. The purpose of this monograph is to present the method of using pro jections of elements of functional Hilbert spaces onto convex cones for es tablishing optimal mean-variance bounds of statistical functionals, and its wide range of applications. This is intended for students, researchers, and practitioners in probability, statistics, and reliability.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 192 pp. Englisch. Nº de ref. del artículo: 9780387952390
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 192. Nº de ref. del artículo: 263893004
Cantidad disponible: 4 disponibles