An Introduction to Ergodic Theory (Graduate Texts in Mathematics)

4 valoración promedio
( 3 valoraciones por Goodreads )
 
9780387951522: An Introduction to Ergodic Theory (Graduate Texts in Mathematics)
Ver todas las copias de esta edición ISBN.
 
 

Book by Walters Peter

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor:

The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.

"Sobre este título" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9780387905990: An Introduction to Ergodic Theory (Graduate Texts in Mathematics)

Edición Destacada

ISBN 10:  0387905995 ISBN 13:  9780387905990
Editorial: Springer, 1982
Tapa dura

9783540905998: Introduction to Ergodic Theory

Spring..., 1982
Tapa dura

Los mejores resultados en AbeBooks

Edición internacional
Edición internacional

1.

WALTERS
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Cantidad disponible: 2
Edición internacional
Librería
firstbookstore
(New Delhi, India)
Valoración
[?]

Descripción Condición: Brand New. Brand New Paperback International Edition, Perfect Condition. Printed in English. Excellent Quality, Service and customer satisfaction guaranteed!. Nº de ref. del artículo: AIND-8223

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 22,70
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De India a Estados Unidos de America
Destinos, gastos y plazos de envío
Edición internacional
Edición internacional

2.

WALTERS
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Tapa blanda Cantidad disponible: 2
Edición internacional
Librería
Romtrade Corp.
(STERLING HEIGHTS, MI, Estados Unidos de America)
Valoración
[?]

Descripción Condición: New. Brand New Paperback International Edition.We Ship to PO BOX Address also. EXPEDITED shipping option also available for faster delivery.This item may ship fro the US or other locations in India depending on your location and availability. Nº de ref. del artículo: AUSBNEW-8223

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 24,87
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Peter Walters
Publicado por Springer-Verlag New York Inc., United States (2000)
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Paperback Cantidad disponible: 1
Librería
Book Depository International
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2000. Paperback. Condición: New. Language: English . Brand New Book. The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics. Softcover reprint of the original 1st ed. 1982. Nº de ref. del artículo: KNV9780387951522

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 42,72
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Peter Walters
Publicado por Springer-Verlag New York Inc., United States (2000)
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Paperback Cantidad disponible: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2000. Paperback. Condición: New. Language: English . Brand New Book. The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics. Softcover reprint of the original 1st ed. 1982. Nº de ref. del artículo: KNV9780387951522

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 42,96
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Peter Walters (author)
Publicado por Springer New York 2000-10-06, Berlin (2000)
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo paperback Cantidad disponible: 10
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción Springer New York 2000-10-06, Berlin, 2000. paperback. Condición: New. Nº de ref. del artículo: 9780387951522

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 42,31
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,85
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Walters, Peter
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Cantidad disponible: 1
Librería
Valoración
[?]

Descripción Condición: New. Publisher/Verlag: Springer, Berlin | The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics. | 0 Preliminaries.-0.1 Introduction.-0.2 Measure Spaces.-0.3 Integration.-0.4 Absolutely Continuous Measures and Conditional Expectations.-0.5 Function Spaces.-0.6 Haar Measure.-0.7 Character Theory.-0.8 Endomorphisms of Tori.-0.9 Perron-Frobenius Theory.-0.10 Topology.- 1 Measure-Preserving Transformations.-1.1 Definition and Examples.-1.2 Problems in Ergodic Theory.-1.3 Associated Isometries.-1.4 Recurrence.-1.5 Ergodicity.-1.6 The Ergodic Theorem.-1.7 Mixing.- 2 Isomorphism, Conjugacy, and Spectral Isomorphism.-2.1 Point Maps and Set Maps.-2.2 Isomorphism of Measure-Preserving Transformations.-2.3 Conjugacy of Measure-Preserving Transformations.-2.4 The Isomorphism Problem.-2.5 Spectral Isomorphism.-2.6 Spectral Invariants.- 3 Measure-Preserving Transformations with Discrete Spectrum.-3.1 Eigenvalues and Eigenfunctions.-3.2 Discrete Spectrum.-3.3 Group Rotations.- 4 Entropy.-4.1 Partitions and Subalgebras.-4.2 Entropy of a Partition.-4.3 Conditional Entropy.-4.4 Entropy of a Measure-Preserving Transformation.-4.5 Properties of h (T, A) and h (T).-4.6 Some Methods for Calculating h (T).-4.7 Examples.-4.8 How Good an Invariant is Entropy?.-4.9 Bernoulli Automorphisms and Kolmogorov Automorphisms.-4.10 The Pinsker ?-Algebra of a Measure-Preserving Transformation.-4.11 Sequence Entropy.-4.12 Non-invertible Transformations.-4.13 Comments.- 5 Topological Dynamics.-5.1 Examples.-5.2 Minimality.-5.3 The Non-wandering Set.-5.4 Topological Transitivity.-5.5 Topological Conjugacy and Discrete Spectrum.-5.6 Expansive Homeomorphisms.- 6 Invariant Measures for Continuous Transformations.-6.1 Measures on Metric Spaces.-6.2 Invariant Measures for Continuous Transformations.-6.3 Interpretation of Ergodicity and Mixing.-6.4 Relation of Invariant Measures to Non-wandering Sets, Periodic Points and Topological Transitivity.-6.5 Unique Ergodicity.-6.6 Examples.- 7 Topological Entropy.-7.1 Definition Using Open Covers.-7.2 Bowen's Definition.-7.3 Calculation of Topological Entropy.- 8 Relationship Between Topological Entropy and Measure-Theoretic Entropy.-8.1 The Entropy Map.-8.2 The Variational Principle.-8.3 Measures with Maximal Entropy.-8.4 Entropy of Affine Transformations.-8.5 The Distribution of Periodic Points.-8.6 Definition of Measure-Theoretic Entropy Using the Metrics dn.- 9 Topological Pressure and Its Relationship with Invariant Measures.-9.1 Topological Pressure.-9.2 Properties of Pressure.-9.3 The Variational Principle.-9.4 Pressure Determines M(X, T).-9.5 Equilibrium States.- 10 Applications and Other Topics.-10.1 The Qualitative Behaviour of Diffeomorphisms.-10.2 The Subadditive Ergodic Theorem and the Multiplicative Ergodic Theorem.-10.3 Quasi-invariant Measures.-10.4 Other Types of Isomorphism.- 10.5 Transformations of Intervals.-10.6 Further Reading.- References. | Format: Paperback | Language/Sprache: english | 380 gr | 236x156x16 mm | 250 pp. Nº de ref. del artículo: K9780387951522

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 46,96
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 2,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Peter Walters
Publicado por Springer-Verlag New York Inc., United States (2000)
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Paperback Cantidad disponible: 10
Librería
Book Depository hard to find
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2000. Paperback. Condición: New. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics. Softcover reprint of the original 1st ed. 1982. Nº de ref. del artículo: LIE9780387951522

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 55,47
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Peter Walters
Publicado por Springer-Verlag New York Inc. (2000)
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Cantidad disponible: > 20
Impresión bajo demanda
Librería
Pbshop
(Wood Dale, IL, Estados Unidos de America)
Valoración
[?]

Descripción Springer-Verlag New York Inc., 2000. PAP. Condición: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: IQ-9780387951522

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 59,20
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,44
A Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Peter Walters
Publicado por Springer Okt 2000 (2000)
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Taschenbuch Cantidad disponible: 1
Librería
BuchWeltWeit Inh. Ludwig Meier e.K.
(Bergisch Gladbach, Alemania)
Valoración
[?]

Descripción Springer Okt 2000, 2000. Taschenbuch. Condición: Neu. Neuware - The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics. 268 pp. Englisch. Nº de ref. del artículo: 9780387951522

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 47,90
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 17,25
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Peter Walters
Publicado por Springer Okt 2000 (2000)
ISBN 10: 0387951520 ISBN 13: 9780387951522
Nuevo Taschenbuch Cantidad disponible: 1
Librería
Rheinberg-Buch
(Bergisch Gladbach, Alemania)
Valoración
[?]

Descripción Springer Okt 2000, 2000. Taschenbuch. Condición: Neu. Neuware - The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics. 268 pp. Englisch. Nº de ref. del artículo: 9780387951522

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 47,90
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 17,25
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda