These notes represent our summary of much of the recent research that has been done in recent years on approximations and bounds that have been developed for compound distributions and related quantities which are of interest in insurance and other areas of application in applied probability. The basic technique employed in the derivation of many bounds is induc tive, an approach that is motivated by arguments used by Sparre-Andersen (1957) in connection with a renewal risk model in insurance. This technique is both simple and powerful, and yields quite general results. The bounds themselves are motivated by the classical Lundberg exponential bounds which apply to ruin probabilities, and the connection to compound dis tributions is through the interpretation of the ruin probability as the tail probability of a compound geometric distribution. The initial exponential bounds were given in Willmot and Lin (1994), followed by the nonexpo nential generalization in Willmot (1994). Other related work on approximations for compound distributions and applications to various problems in insurance in particular and applied probability in general is also discussed in subsequent chapters. The results obtained or the arguments employed in these situations are similar to those for the compound distributions, and thus we felt it useful to include them in the notes. In many cases we have included exact results, since these are useful in conjunction with the bounds and approximations developed.
"Sinopsis" puede pertenecer a otra edición de este libro.
These notes represent our summary of much of the recent research that has been done in recent years on approximations and bounds that have been developed for compound distributions and related quantities which are of interest in insurance and other areas of application in applied probability. The basic technique employed in the derivation of many bounds is induc tive, an approach that is motivated by arguments used by Sparre-Andersen (1957) in connection with a renewal risk model in insurance. This technique is both simple and powerful, and yields quite general results. The bounds themselves are motivated by the classical Lundberg exponential bounds which apply to ruin probabilities, and the connection to compound dis tributions is through the interpretation of the ruin probability as the tail probability of a compound geometric distribution. The initial exponential bounds were given in Willmot and Lin (1994), followed by the nonexpo nential generalization in Willmot (1994). Other related work on approximations for compound distributions and applications to various problems in insurance in particular and applied probability in general is also discussed in subsequent chapters. The results obtained or the arguments employed in these situations are similar to those for the compound distributions, and thus we felt it useful to include them in the notes. In many cases we have included exact results, since these are useful in conjunction with the bounds and approximations developed.
This monograph discusses Lundberg approximations for compound distributions with special emphasis on applications in insurance risk modeling. These distributions are somewhat awkward from an analytic standpoint, but play a central role in insurance and other areas of applied probability modeling such as queueing theory. Consequently, the material is of interest to researchers and graduate students interested in these areas. The material is self-contained, but an introductory course in insurance risk theory is beneficial to prospective readers. Lundberg asymptotics and bounds have a long history in connection with ruin probabilities and waiting time distributions in queueing theory, and have more recently been extended to compound distributions. This connection has its roots in the compound geometric representation of the ruin probabilities and waiting time distributions. A systematic treatment of these approximations is provided, drawing heavily on monotonicity ideas from reliability theory. The results are then applied to the solution of defective renewal equations, analysis of the time and severity of insurance ruin, and renewal risk models, which may also be viewed in terms of the equilibrium waiting time distribution in the G/G/1 queue. Many known results are derived and extended so that much of the material has not appeared elsewhere in the literature. A unique feature involves the use of elementary analytic techniques which require only undergraduate mathematics as a prerequisite. New proofs of many results are given, and an extensive bibliography is provided. Gordon Willmot is Professor of Statistics and Actuarial Science at the University of Waterloo. His research interests are in insurance risk and queueing theory. He is an associate editor of the North American Actuarial Journal.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 4,26 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,41 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Lost Books, AUSTIN, TX, Estados Unidos de America
Paperback. Condición: Very good. Softcover Reprint of the Origi ed. Trade paperback (US). 250 p. Contains: Illustrations, black & white. Lecture Notes in Statistics, 156. Audience: General/trade. Nº de ref. del artículo: Alibris.0009135
Cantidad disponible: 1 disponibles
Librería: Book Dispensary, Concord, ON, Canada
Soft cover. Condición: As New. BRAND NEW softcover, minimal shelf/handling wear. Book. Nº de ref. del artículo: 124287
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580174384
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 671989-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. This monograph discusses Lundberg approximations for compound distributions with special emphasis on applications in insurance risk modeling. These distributions are somewhat awkward from an analytic standpoint, but play a central role in insurance and other areas of applied probability modeling such as queueing theory. Consequently, the material is of interest to researchers and graduate students interested in these areas. The material is self-contained, but an introductory course in insurance risk theory is beneficial to prospective readers. Lundberg asymptotics and bounds have a long history in connection with ruin probabilities and waiting time distributions in queueing theory, and have more recently been extended to compound distributions. This connection has its roots in the compound geometric representation of the ruin probabilities and waiting time distributions. A systematic treatment of these approximations is provided, drawing heavily on monotonicity ideas from reliability theory.The results are then applied to the solution of defective renewal equations, analysis of the time and severity of insurance ruin, and renewal risk models, which may also be viewed in terms of the equilibrium waiting time distribution in the G/G/1 queue. Many known results are derived and extended so that much of the material has not appeared elsewhere in the literature. A unique feature involves the use of elementary analytic techniques which require only undergraduate mathematics as a prerequisite. New proofs of many results are given, and an extensive bibliography is provided. Gordon Willmot is Professor of Statistics and Actuarial Science at the University of Waterloo. His research interests are in insurance risk and queueing theory. He is an associate editor of the North American Actuarial Journal. This book will be a useful reference for researchers and graduate students in the areas of applied probability and insurance risk. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780387951355
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9780387951355
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 671989
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9780387951355
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 671989-n
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -These notes represent our summary of much of the recent research that has been done in recent years on approximations and bounds that have been developed for compound distributions and related quantities which are of interest in insurance and other areas of application in applied probability. The basic technique employed in the derivation of many bounds is induc tive, an approach that is motivated by arguments used by Sparre-Andersen (1957) in connection with a renewal risk model in insurance. This technique is both simple and powerful, and yields quite general results. The bounds themselves are motivated by the classical Lundberg exponential bounds which apply to ruin probabilities, and the connection to compound dis tributions is through the interpretation of the ruin probability as the tail probability of a compound geometric distribution. The initial exponential bounds were given in Willmot and Lin (1994), followed by the nonexpo nential generalization in Willmot (1994). Other related work on approximations for compound distributions and applications to various problems in insurance in particular and applied probability in general is also discussed in subsequent chapters. The results obtained or the arguments employed in these situations are similar to those for the compound distributions, and thus we felt it useful to include them in the notes. In many cases we have included exact results, since these are useful in conjunction with the bounds and approximations developed. 264 pp. Englisch. Nº de ref. del artículo: 9780387951355
Cantidad disponible: 2 disponibles