Artículos relacionados a Stochastic Processes and Orthogonal Polynomials: 146...

Stochastic Processes and Orthogonal Polynomials: 146 (Lecture Notes in Statistics) - Tapa blanda

 
9780387950150: Stochastic Processes and Orthogonal Polynomials: 146 (Lecture Notes in Statistics)

Sinopsis

It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar­ lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation­ ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En­ gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im­ portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ­ ential or difference equation and stresses the limit relations between them.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar­ lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation­ ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En­ gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im­ portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ­ ential or difference equation and stresses the limit relations between them.

Reseña del editor

The book offers an accessible reference for researchers in the probability, statistics and special functions communities. It gives a variety of interdisciplinary relations between the two main ingredients of stochastic processes and orthogonal polynomials. It covers topics like time dependent and asymptotic analysis for birth-death processes and diffusions, martingale relations for Lévy processes, stochastic integrals and Stein's approximation method. Almost all well-known orthogonal polynomials, which are brought together in the so-called Askey Scheme, come into play. This volume clearly illustrates the powerful mathematical role of orthogonal polynomials in the analysis of stochastic processes and is made accessible for all mathematicians with a basic background in probability theory and mathematical analysis. Wim Schoutens is a Postdoctoral Researcher of the Fund for Scientific Research-Flanders (Belgium). He received his PhD in Science from the Catholic University of Leuven, Belgium.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
Card covers very clean, very mild...
Ver este artículo

EUR 14,45 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781461211716: Stochastic Processes and Orthogonal Polynomials

Edición Destacada

ISBN 10:  1461211719 ISBN 13:  9781461211716
Editorial: Springer, 2011
Tapa blanda

Resultados de la búsqueda para Stochastic Processes and Orthogonal Polynomials: 146...

Imagen del vendedor

SCHOUTENS, Wim
Publicado por Springer, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Antiguo o usado Soft cover

Librería: LOROS Bookshop, Leicester, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Soft cover. Condición: Very Good. Card covers very clean, very mild creasing of lower outer corner, which continues into leaves of book. Internally, clean and free from markings or annotation. Seller image provided. For further helpful synopsis and reviews try clicking on 'bookseller image'. Selling books since 1999, all proceeds help fund LOROS Charity Hospice. Nº de ref. del artículo: 000415

Contactar al vendedor

Comprar usado

EUR 35,73
Convertir moneda
Gastos de envío: EUR 14,45
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Schoutens, Wim
Publicado por Springer, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Antiguo o usado Paperback

Librería: ThriftBooks-Atlanta, AUSTELL, GA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.59. Nº de ref. del artículo: G038795015XI4N00

Contactar al vendedor

Comprar usado

EUR 52,26
Convertir moneda
Gastos de envío: EUR 3,81
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Schoutens, Wim:
Publicado por Springer-Verlag New York, Inc., 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Antiguo o usado Broschiert

Librería: Antiquariat Bernhardt, Kassel, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Broschiert. Condición: Sehr gut. Lecture Notes in Statistics, Band 146. Zust: Gutes Exemplar. XIII, 163 Seiten, Englisch 270g. Nº de ref. del artículo: 493407

Contactar al vendedor

Comprar usado

EUR 77,34
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Wim Schoutens
Publicado por Springer New York, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 The Askey Scheme of Orthogonal Polynomials.- 2.1 Markov Processes.- 3 Birth and Death Processes, Random Walks, and Orthogonal Polynomials.- 4 Sheffer Systems.- 5 Orthogonal Polynomials in Stochastic Integration Theory.- Stein Approximation and Orthogonal . Nº de ref. del artículo: 5912289

Contactar al vendedor

Comprar nuevo

EUR 92,27
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Wim Schoutens
Publicado por Springer New York Apr 2000, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them. 184 pp. Englisch. Nº de ref. del artículo: 9780387950150

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Schoutens, Wim
Publicado por Springer, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780387950150_new

Contactar al vendedor

Comprar nuevo

EUR 116,27
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Wim Schoutens
Publicado por Springer New York, Springer US, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them. Nº de ref. del artículo: 9780387950150

Contactar al vendedor

Comprar nuevo

EUR 112,77
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Wim Schoutens
ISBN 10: 038795015X ISBN 13: 9780387950150
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch. Nº de ref. del artículo: 9780387950150

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Wim Schoutens
Publicado por Springer-Verlag New York Inc., 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Nuevo Paperback / softback
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 620. Nº de ref. del artículo: C9780387950150

Contactar al vendedor

Comprar nuevo

EUR 136,44
Convertir moneda
Gastos de envío: EUR 8,56
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Wim Schoutens
Publicado por Springer, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 184. Nº de ref. del artículo: 26315443

Contactar al vendedor

Comprar nuevo

EUR 140,15
Convertir moneda
Gastos de envío: EUR 9,89
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 4 copia(s) de este libro

Ver todos los resultados de su búsqueda