Book by None
"Sinopsis" puede pertenecer a otra edición de este libro.
This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,17 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 14,11 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: BOOK2BUY, Lynbrook, NY, Estados Unidos de America
Hardcover. Condición: Good. No Jacket. Hardcover - clean, no marks, clean inside, no dj - from a private collection -. Nº de ref. del artículo: 39490.240724
Cantidad disponible: 1 disponibles
Librería: Foliobooks, Madison, WI, Estados Unidos de America
Hardcover. Condición: Very Good. 1997 edition. Small area of sticker residue on front FEP where previous owners address label was removed; otherwise clean, unmarked, and undamaged, inside and out. A very nice copy. Nº de ref. del artículo: 20230909b
Cantidad disponible: 1 disponibles
Librería: Moe's Books, Berkeley, CA, Estados Unidos de America
hardcover. Condición: good. Bottom edge faintly stained. Nº de ref. del artículo: 1119571
Cantidad disponible: 1 disponibles
Librería: Midway Book Store (ABAA), St. Paul, MN, Estados Unidos de America
Hardcover. Condición: Very Good. Corrected Second Printing. 24 x 16 cm. xx 582pp. Index. Bound into glossy yellow boards. Bump to tail of spine. "This volume is a record of an instructional conference on number theory and arithmetic geometry held from August 9 through 18, 1995 at Boston University. It contains expanded version of all of the major lectures given during the conference.". Nº de ref. del artículo: 79664
Cantidad disponible: 1 disponibles
Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
Condición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Nº de ref. del artículo: Z1-A-012-02809
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1050grams, ISBN:9780387946092. Nº de ref. del artículo: 4840799
Cantidad disponible: 1 disponibles
Librería: Antiquariat Jochen Mohr -Books and Mohr-, Oberthal, Alemania
hardcover. Condición: Sehr gut. 2., corr. Printing. 582 Seiten This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable TOC:Preface.- Contributors.- Schedule of Lectures.- Introduction.- An Overview of the Proof of Fermat's Last Theorem.- A Survey of the Arithmetic Theory of Elliptic Curves.- Modular Curves, Hecke Correspondences, and L-Functions.- Galois Cohomology.- Finite Flat Group Schemes.- Three Lectures on the Modularity of PE.3 and the Langlands Reciprocity Conjecture.- Serre's Conjectures.- An Introduction to the Deformation Theory of Galois Representations.- Explicit Construction of Universal Deformation Rings.- Hecke Algebras and the Gorenstein Property.- Criteria for Complete Intersections.- l-adic Modular Deformations and Wiles's "Main Conjecture".- The Flat Deformation Functor.- Hecke Rings and Universal Deformation Rings.- Explicit Families of Elliptic Curves with Prescribed Mod N Representations.- Modularity of Mod 5 Representations.- An Extension of Wiles' Results.- Appendix to Chapter 17: Classification of PE.1 by the j Invariant of E.- Class Field Theory and the First Case of Fermat's Last Theorem.- Remarks on the History of Fermat's Last Theorem 1844 to 1984.- On Ternary Equations of Fermat Type and Relations with Elliptic Curves.- Wiles' Theorem and the Arithmetic of Elliptic Curves. 9780387946092 Wir verkaufen nur, was wir auch selbst lesen würden. Sprache: Deutsch Gewicht in Gramm: 967. Nº de ref. del artículo: 88758
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 22002247
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387946092_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 22002247-n
Cantidad disponible: Más de 20 disponibles