A linear optimization problem is the task of minimizing a linear real-valued function of finitely many variables subject to linear con straints; in general there may be infinitely many constraints. This book is devoted to such problems. Their mathematical properties are investi gated and algorithms for their computational solution are presented. Applications are discussed in detail. Linear optimization problems are encountered in many areas of appli cations. They have therefore been subject to mathematical analysis for a long time. We mention here only two classical topics from this area: the so-called uniform approximation of functions which was used as a mathematical tool by Chebyshev in 1853 when he set out to design a crane, and the theory of systems of linear inequalities which has already been studied by Fourier in 1823. We will not treat the historical development of the theory of linear optimization in detail. However, we point out that the decisive break through occurred in the middle of this century. It was urged on by the need to solve complicated decision problems where the optimal deployment of military and civilian resources had to be determined. The availability of electronic computers also played an important role. The principal computational scheme for the solution of linear optimization problems, the simplex algorithm, was established by Dantzig about 1950. In addi tion, the fundamental theorems on such problems were rapidly developed, based on earlier published results on the properties of systems of linear inequalities.
"Sinopsis" puede pertenecer a otra edición de este libro.
A linear optimization problem is the task of minimizing a linear real-valued function of finitely many variables subject to linear con straints; in general there may be infinitely many constraints. This book is devoted to such problems. Their mathematical properties are investi gated and algorithms for their computational solution are presented. Applications are discussed in detail. Linear optimization problems are encountered in many areas of appli cations. They have therefore been subject to mathematical analysis for a long time. We mention here only two classical topics from this area: the so-called uniform approximation of functions which was used as a mathematical tool by Chebyshev in 1853 when he set out to design a crane, and the theory of systems of linear inequalities which has already been studied by Fourier in 1823. We will not treat the historical development of the theory of linear optimization in detail. However, we point out that the decisive break through occurred in the middle of this century. It was urged on by the need to solve complicated decision problems where the optimal deployment of military and civilian resources had to be determined. The availability of electronic computers also played an important role. The principal computational scheme for the solution of linear optimization problems, the simplex algorithm, was established by Dantzig about 1950. In addi tion, the fundamental theorems on such problems were rapidly developed, based on earlier published results on the properties of systems of linear inequalities.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,95 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Alemania
Broschiert. Condición: Gut. 197 Seiten Das hier angebotene Buch stammt aus einer teilaufgelösten Bibliothek und kann die entsprechenden Kennzeichnungen aufweisen (Rückenschild, Instituts-Stempel.); der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 320. Nº de ref. del artículo: 2202351
Cantidad disponible: 1 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-157115
Cantidad disponible: 1 disponibles
Librería: NEPO UG, Rüsselsheim am Main, Alemania
Condición: Gut. 212 Seiten ex Library Book / aus einer wissenschafltichen Bibliothek / ausgabe 1983 Sprache: Englisch Gewicht in Gramm: 293 23,1 x 15,5 x 1,3 cm, Taschenbuch. Nº de ref. del artículo: 336070
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 212 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 4875292/202
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 212 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5526935
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 212. Nº de ref. del artículo: 262353736
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387908571_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Nº de ref. del artículo: 5911772
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 212. Nº de ref. del artículo: 182353730
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - A linear optimization problem is the task of minimizing a linear real-valued function of finitely many variables subject to linear con straints; in general there may be infinitely many constraints. This book is devoted to such problems. Their mathematical properties are investi gated and algorithms for their computational solution are presented. Applications are discussed in detail. Linear optimization problems are encountered in many areas of appli cations. They have therefore been subject to mathematical analysis for a long time. We mention here only two classical topics from this area: the so-called uniform approximation of functions which was used as a mathematical tool by Chebyshev in 1853 when he set out to design a crane, and the theory of systems of linear inequalities which has already been studied by Fourier in 1823. We will not treat the historical development of the theory of linear optimization in detail. However, we point out that the decisive break through occurred in the middle of this century. It was urged on by the need to solve complicated decision problems where the optimal deployment of military and civilian resources had to be determined. The availability of electronic computers also played an important role. The principal computational scheme for the solution of linear optimization problems, the simplex algorithm, was established by Dantzig about 1950. In addi tion, the fundamental theorems on such problems were rapidly developed, based on earlier published results on the properties of systems of linear inequalities. Nº de ref. del artículo: 9780387908571
Cantidad disponible: 1 disponibles