Artículos relacionados a Statistical Estimation Asymptotic Theory (Applications...

Statistical Estimation Asymptotic Theory (Applications of Mathematics) - Tapa dura

 
9780387905235: Statistical Estimation Asymptotic Theory (Applications of Mathematics)

Sinopsis

when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap­ proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap­ proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
Good++; Hardcover; Very light wear...
Ver este artículo

EUR 42,56 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

Resultados de la búsqueda para Statistical Estimation Asymptotic Theory (Applications...

Imagen de archivo

I.A. Ibragimov & R.Z. Has'minskii
Publicado por Springer-Verlag Publishing, 1981
ISBN 10: 0387905235 ISBN 13: 9780387905235
Antiguo o usado Tapa dura

Librería: Salish Sea Books, Bellingham, WA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Good++; Hardcover; Very light wear to the covers with "straight" edge-corners; Small blue ink mark to the top edge, otherwise unblemished textblock edges; The endpapers and text pages are all clean and unmarked; This book will be shipped in a sturdy cardboard box with foam padding; Medium Format (8.5" - 9.75" tall); 1.7 lbs; Yellow and white cloth covers with title in black lettering; 1981, Springer-Verlag Publishing; 403 pages; "Statistical Estimation. Asymptotic Theory. Applications of Mathematics, Volume 16," by I.A. Ibragimov & R.Z. Has'minskii. Nº de ref. del artículo: SKU-1244AJ01008314

Contactar al vendedor

Comprar usado

EUR 173,32
Convertir moneda
Gastos de envío: EUR 42,56
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ibragimov, I.A.,Has'minskii, R.Z.
Publicado por Springer, 1981
ISBN 10: 0387905235 ISBN 13: 9780387905235
Antiguo o usado Tapa dura

Librería: Midtown Scholar Bookstore, Harrisburg, PA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

hardcover. Condición: Good. previous owner's name in front, English edition, number 16 Good hardcover with some shelfwear; may have previous owner's name inside. Standard-sized. Nº de ref. del artículo: mon0000295314

Contactar al vendedor

Comprar usado

EUR 155,11
Convertir moneda
Gastos de envío: EUR 63,86
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

I.A. Ibragimov & R.Z. Has'minskii
Publicado por Springer-Verlag Publishing, 1981
ISBN 10: 0387905235 ISBN 13: 9780387905235
Antiguo o usado Tapa dura

Librería: Salish Sea Books, Bellingham, WA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Good++; Hardcover; Clean covers with minor edgewear; Unblemished textblock edges; The endpapers and all text pages are clean and unmarked; The binding is excellent with a straight spine; This book will be shipped in a sturdy cardboard box with foam padding; Medium Format (8.5" - 9.75" tall); 1.7 lbs; Yellow and white cloth covers with title in black lettering; 1981, Springer-Verlag Publishing; 403 pages; "Statistical Estimation. Asymptotic Theory. Applications of Mathematics, Volume 16," by I.A. Ibragimov & R.Z. Has'minskii. Nº de ref. del artículo: SKU-1561AJ05205123

Contactar al vendedor

Comprar usado

EUR 197,41
Convertir moneda
Gastos de envío: EUR 42,56
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

I.A. Ibragimov & R.Z. Has'minskii
Publicado por Springer-Verlag Publishing, 1981
ISBN 10: 0387905235 ISBN 13: 9780387905235
Antiguo o usado Tapa dura

Librería: Salish Sea Books, Bellingham, WA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Good++; Hardcover; Light overall wear to the covers with slightly "bumped" edge-corners; Unblemished textblock edges; Pen notations to about 15 pages, otherwise the endpapers and all text pages are clean and unmarked; The binding is excellent with a straight spine; This book will be shipped in a sturdy cardboard box with foam padding; Medium Format (8.5" - 9.75" tall); Yellow and white cloth covers with title in black lettering; 1981, Springer-Verlag Publishing; 403 pages; "Statistical Estimation. Asymptotic Theory. Applications of Mathematics, Volume 16," by I.A. Ibragimov & R.Z. Has'minskii. Nº de ref. del artículo: SKU-0585AT07305092

Contactar al vendedor

Comprar usado

EUR 217,20
Convertir moneda
Gastos de envío: EUR 42,56
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito