Artículos relacionados a A Course in Arithmetic: 7 (Graduate Texts in Mathematics)

A Course in Arithmetic: 7 (Graduate Texts in Mathematics) - Tapa blanda

 
9780387900414: A Course in Arithmetic: 7 (Graduate Texts in Mathematics)

Sinopsis

This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant +- I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor- phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor­ phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer-Verlag New York Inc.
  • Año de publicación1973
  • ISBN 10 0387900411
  • ISBN 13 9780387900414
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas127
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 32,03 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para A Course in Arithmetic: 7 (Graduate Texts in Mathematics)

Imagen de archivo

Serre, Jean Pierre
Publicado por Springer-Verlag, 1973
ISBN 10: 0387900411 ISBN 13: 9780387900414
Nuevo paperback

Librería: dsmbooks, Liverpool, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: New. New. book. Nº de ref. del artículo: D7S9-1-M-0387900411-4

Contactar al vendedor

Comprar nuevo

EUR 112,65
Convertir moneda
Gastos de envío: EUR 32,03
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito