The new edition of this text on classical Galois Theory approaches the theory from the linear algebra point of view, following Artin. It also presents a number of applications of the theory and an expanded chapter on transcendental extensions.
"Sinopsis" puede pertenecer a otra edición de este libro.
Steven H. Weintraub is a Professor of Mathematics at Lehigh University and author of seven books. This book grew out of a graduate course he taught at Lehigh. He is also the author of Algebra: An Approach via Module Theory (with W. A. Adkins).
The book discusses classical Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. While most of the book is concerned with finite extensions, it discusses algebraic closure and infinite Galois extensions, and concludes with a new chapter on transcendental extensions.
Key topics and features of this second edition:
- Approaches Galois theory from the linear algebra point of view, following Artin;
- Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity.
Review from the first edition:
"The text offers the standard material of classical field theory and Galois theory, though in a remarkably original, unconventional and comprehensive manner … . the book under review must be seen as a highly welcome and valuable complement to existing textbook literature … . It comes with its own features and advantages … it surely is a perfect introduction to this evergreen subject. The numerous explaining remarks, hints, examples and applications are particularly commendable … just as the outstanding clarity and fullness of the text." (Zentralblatt MATH, Vol. 1089 (15), 2006)
Steven H. Weintraub is a Professor of Mathematics at Lehigh University and the author of seven books. This book grew out of a graduate course he taught at Lehigh. He is also the author of Algebra: An Approach via Module Theory (with W. A. Adkins).
"Sobre este título" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,28 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Good. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 51345381-6
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 5838503-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. This is a textbook on Galois theory. Galois theory has a well-deserved re- tation as one of the most beautiful subjects in mathematics. I was seduced by its beauty into writing this book. I hope you will be seduced by its beauty in reading it. This book begins at the beginning. Indeed (and perhaps a little unusually for a mathematics text), it begins with an informal introductory chapter, Ch- ter 1. In this chapter we give a number of examples in Galois theory, even before our terms have been properly de?ned. (Needless to say, even though we proceed informally here, everything we say is absolutely correct.) These examples are sort of an airport beacon, shining a clear light at our destination as we navigate a course through the mathematical skies to get there. Then we start with our proper development of the subject, in Chapter 2. We assume no prior knowledge of ?eld theory on the part of the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the FTGT. This is a textbook on Galois theory. Galois theory has a well-deserved re- tation as one of the most beautiful subjects in mathematics. In this chapter we give a number of examples in Galois theory, even before our terms have been properly de?ned. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780387875743
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580173473
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387875743_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9780387875743
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 5838503-n
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Galois theory is a mature mathematical subject of particular beauty. Any Galois theory book written nowadays bears a great debt to Emil Artin's classic text 'Galois Theory,' and this book is no exception. While Artin's book pioneered an approach to Galois theory that relies heavily on linear algebra, this book's author takes the linear algebra emphasis even further. This special approach to the subject together with the clarity of its presentation, as well as the choice of topics covered, has made the first edition ofthis book a more than worthwhile addition to theliterature on Galois Theory. The second edition, with a new chapter on transcendental extensions, will only further serve to make the bookappreciated by and approachable toundergraduate and beginning graduate math majors. 228 pp. Englisch. Nº de ref. del artículo: 9780387875743
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 228 2nd Edition. Nº de ref. del artículo: 26441249
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 357. Nº de ref. del artículo: C9780387875743
Cantidad disponible: Más de 20 disponibles