This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications.
This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
"Sinopsis" puede pertenecer a otra edición de este libro.
Sergiy V. Borodachov is a Professor of Mathematics at Towson University, which he joined in 2008. Prof. Borodachov's primary research interests include approximation theory, numerical analysis, and minimal energy problems. He authored or co-authored more than 30 research articles and gave more than 90 talks at research conferences and seminars.
Douglas P. Hardin is a Professor of Mathematics and a Professor of Biomedical Informatics at Vanderbilt University. His research interests include discrete minimum energy problems, fractals, harmonic analysis (wavelets), inverse problems, and machine learning. Hardin has authored or co-authored over 115 research publications, 2 monographs, and co-edited 3 research journal special issues.
Edward B. Saff is a Professor of Mathematics at Vanderbilt University and Director of the Center for Constructive Approximation. His research areas include approximation theory, numerical analysis, and potential theory. Saff is a Fellow of the American Mathematics Society, a Foreign Member of the Bulgarian Academy of Science, and was a recipient of both a Guggenheim and a Fulbright Fellowships. He has authored or co-authored over 270 research articles, 4 research monographs and 4 textbooks, and is co-Editor-in-Chief and Managing Editor of the research journal Constructive Approximation. Prof. Saff also serves on the boards of 3 other research journals.
This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications.
This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte–Yudin–Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn–Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,20 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387848075_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Subject matter connects several different branches of mathematics and has myriad applications to the physical and biological sciences Book is rich with attractive, full color images Self-contained book, accessible to both research . Nº de ref. del artículo: 332921062
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis andmakes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications. This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, andclassical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linearprogramming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures forChebyshev (polarization) problems. 684 pp. Englisch. Nº de ref. del artículo: 9780387848075
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis andmakes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications. This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, andclassical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linearprogramming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures forChebyshev (polarization) problems. Nº de ref. del artículo: 9780387848075
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. XVIII, 666 62 illus., 53 illus. in color. 1 Edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26384552972
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1111. Nº de ref. del artículo: C9780387848075
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications.This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte¿Yudin¿Levenshtein linearprogramming methods for lower bounding energy, a thorough treatment of Cohn¿Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 684 pp. Englisch. Nº de ref. del artículo: 9780387848075
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. XVIII, 666 62 illus., 53 illus. in color. Nº de ref. del artículo: 379350995
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. XVIII, 666 62 illus., 53 illus. in color. Nº de ref. del artículo: 18384552966
Cantidad disponible: 4 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580173373
Cantidad disponible: Más de 20 disponibles