Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (Statistics for Biology and Health)

3,5 valoración promedio
( 4 valoraciones por GoodReads )
 
9780387772431: Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (Statistics for Biology and Health)
Críticas:

From the reviews:

"This book covers an important topic, because these prediction models are essential for individualizing diagnostic and treatment decision making. The topic is of increased importance as evidence-based medicine is increasingly implemented and as scientific and technological advances reveal new potential predictors of outcome. This book presents an approach for developing, validating, and updating prediction models.… [I]t provides ways to optimally utilize regression techniques to predict an outcome.… This book is written in a clear and accessible style.… [A]valuable resource for anyone interested in developing or applying a prediction model." (Todd A. Alonzo, American Journal of Epidemiology, 2009; Vol. 170, No. 4)

"Overall I think this is a well-written book, which will have a wide appeal. The idea of defining a strategy to deal with clinical prediction problems might be somewhat controversial, but considering the variable quality of statistical analyses that appear in the medical literature, I believe such an approach is desirable. The book appears to have struck a good balance between practical examples and descriptions of statistical techniques.... It is refreshing to see a practical book applying many modern regression techniques to real problems." (David Ohlssen, Journal of Biopharmaceutical Statistics, Issue 6, 2009)

"Dr Steyerberg … aims to provide an insight and also a practical illustration on how modern statistical concepts and regression methods can be applied in medical prediction outcomes. The book…will be of interest to those who work in medical cybernetics and indeed all cybernetics and systems researchers who are studying such medical problems and wish to apply statistical approaches and methodologies. It is worth examining the detailed contents list … and individual chapters may be of particular value to potential readers." (C. J. H. Mann, Kybernetes, Vol. 38 (6), 2009)

"The book … will be of interest to those who work in medical cybernetics and indeed all cybernetics and systems researchers who are studying such medical problems and wish to apply statistical approaches and methodologies." (C. J. H. Mann, Kybernetes, Vol. 38, No. 6, 2009)

“…and excellent practical guide for developing, assessing and updating clinical models both for disease prognosis and diagnosis. The book’s clinical focus in this era of evidence-based medicine is refreshing and serves as a much-needed addition to statistical modeling of clinical data. The book assumes a basic familiarity with modeling using generalized linear models, focusing instead on the real challenges facing applied biostatisticians and epidemiologists wanting to create useful models: dealing with a plethora of model choices, small sample sizes, many candidate predictors and missing data. This is an example-based book illuminating the vagaries of clinical data and offering sound practical advice on data exploration, model selection and data presentation. …The author uses simple simulations using a few reproducible R commands to motivate the use of imputation methods and shrinkage. These simple but illuminating illustrations are one of the highlights of the book and serve as excellent pedagogical tools for motivating good statistical thinking. …” (International Statistical Review 2009, 77, 2)

“This is an excellent text that should be read by anyone performing prediction modeling. … the text has three audiences epidemiologists and applied biostatisticians who want to develop or apply a prediction model health care professionals who want to judge a study that presents a prediction model and theoretical researchers … . I found the book very useful and I believe clinicians and policy makers will be similarly well served. … All are excellent summaries for readers and provide links to resources for further investigation.” (Chris Andrews, Technometrics, Vol. 53 (1), February, 2011)

Reseña del editor:

This book aims to provide insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but these innovations are insufficiently applied in medical research. Old-fashioned, data hungry methods are often used in data sets of limited size, validation of predictions is not done or only in a simplistic way, and updating of already available models is not considered. A sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. Clinical Prediction Models presents a practical checklist with seven steps that need to be considered for development of a valid prediction model. These include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and clinical usefulness; internal validation; and presentation format. The steps are illustrated with many small case studies and R computer code, with data sets made available in the public domain [http://www.clinicalpredictionmodels.org/]. The book further focuses on generalizability of prediction models, including patterns of invalidity that may be encountered in new settings, approaches to modifying and extending a model, and comparisons of centers after case-mix adjustment by a prediction model. The text is primarily intended for epidemiologists and applied biostatisticians. It can be used as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. It is beneficial if readers are familiar with common statistical models in medicine: linear regression, logistic regression, and Cox regression. The book is practical in nature. But it also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. In this era of evidence-based medicine, randomized clinical trials are the basis for assessment of treatment efficacy. Prediction models are key to individualizing diagnostic and treatment decision-making.

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Ewout W. Steyerberg
Editorial: Springer-Verlag New York Inc., United States (2009)
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2009. Hardback. Estado de conservación: New. 2009.. 236 x 160 mm. Language: English . Brand New Book. Prediction models are important in various fields, including medicine, physics, meteorology, and finance. Prediction models will become more relevant in the medical field with the increase in knowledge on potential predictors of outcome, e.g. from genetics. Also, the number of applications will increase, e.g. with targeted early detection of disease, and individualized approaches to diagnostic testing and treatment. The current era of evidence-based medicine asks for an individualized approach to medical decision-making. Evidence-based medicine has a central place for meta-analysis to summarize results from randomized controlled trials; similarly prediction models may summarize the effects of predictors to provide individu- ized predictions of a diagnostic or prognostic outcome. Why Read This Book? My motivation for working on this book stems primarily from the fact that the development and applications of prediction models are often suboptimal in medical publications. With this book I hope to contribute to better understanding of relevant issues and give practical advice on better modelling strategies than are nowadays widely used. Issues include: (a) Better predictive modelling is sometimes easily possible; e.g. a large data set with high quality data is available, but all continuous predictors are dich- omized, which is known to have several disadvantages. Nº de ref. de la librería AAZ9780387772431

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 84,79
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a España
Destinos, gastos y plazos de envío

2.

Ewout W. Steyerberg
Editorial: Springer-Verlag New York Inc. 2008-10-20, New York, NY (2008)
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Tapa dura Cantidad: 10
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc. 2008-10-20, New York, NY, 2008. hardback. Estado de conservación: New. Nº de ref. de la librería 9780387772431

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 81,67
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,75
De Reino Unido a España
Destinos, gastos y plazos de envío

3.

Ewout W. Steyerberg
Editorial: Springer-Verlag New York Inc., United States (2009)
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2009. Hardback. Estado de conservación: New. 2009.. 236 x 160 mm. Language: English . Brand New Book. Prediction models are important in various fields, including medicine, physics, meteorology, and finance. Prediction models will become more relevant in the medical field with the increase in knowledge on potential predictors of outcome, e.g. from genetics. Also, the number of applications will increase, e.g. with targeted early detection of disease, and individualized approaches to diagnostic testing and treatment. The current era of evidence-based medicine asks for an individualized approach to medical decision-making. Evidence-based medicine has a central place for meta-analysis to summarize results from randomized controlled trials; similarly prediction models may summarize the effects of predictors to provide individu- ized predictions of a diagnostic or prognostic outcome. Why Read This Book? My motivation for working on this book stems primarily from the fact that the development and applications of prediction models are often suboptimal in medical publications. With this book I hope to contribute to better understanding of relevant issues and give practical advice on better modelling strategies than are nowadays widely used. Issues include: (a) Better predictive modelling is sometimes easily possible; e.g. a large data set with high quality data is available, but all continuous predictors are dich- omized, which is known to have several disadvantages. Nº de ref. de la librería AAZ9780387772431

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 86,43
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a España
Destinos, gastos y plazos de envío

4.

Ewout W. Steyerberg
Editorial: Springer-Verlag New York Inc.
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Tapa dura Cantidad: 4
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc. Hardback. Estado de conservación: new. BRAND NEW, Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating, Ewout W. Steyerberg, Prediction models are important in various fields, including medicine, physics, meteorology, and finance. Prediction models will become more relevant in the medical field with the increase in knowledge on potential predictors of outcome, e.g. from genetics. Also, the number of applications will increase, e.g. with targeted early detection of disease, and individualized approaches to diagnostic testing and treatment. The current era of evidence-based medicine asks for an individualized approach to medical decision-making. Evidence-based medicine has a central place for meta-analysis to summarize results from randomized controlled trials; similarly prediction models may summarize the effects of predictors to provide individu- ized predictions of a diagnostic or prognostic outcome. Why Read This Book? My motivation for working on this book stems primarily from the fact that the development and applications of prediction models are often suboptimal in medical publications. With this book I hope to contribute to better understanding of relevant issues and give practical advice on better modelling strategies than are nowadays widely used. Issues include: (a) Better predictive modelling is sometimes easily possible; e.g. a large data set with high quality data is available, but all continuous predictors are dich- omized, which is known to have several disadvantages. Nº de ref. de la librería B9780387772431

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 82,33
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 8,03
De Reino Unido a España
Destinos, gastos y plazos de envío

5.

Ewout W. Steyerberg
Editorial: Springer-Verlag New York Inc. (2008)
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Cantidad: 8
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., 2008. HRD. Estado de conservación: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. de la librería GB-9780387772431

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 82,99
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 9,24
De Reino Unido a España
Destinos, gastos y plazos de envío

6.

Steyerberg, Ewout
Editorial: Springer (2008)
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Tapa dura Cantidad: 8
Librería
Valoración
[?]

Descripción Springer, 2008. Estado de conservación: New. Despite advances in statistical approaches towards clinical outcome prediction, these innovations are insufficiently utilized in medical research. This book provides information on how modern statistical concepts and regression methods can be applied. Series: Statistics for Biology and Health. Num Pages: 528 pages, biography. BIC Classification: MJA. Category: (P) Professional & Vocational. Dimension: 242 x 163 x 28. Weight in Grams: 936. . 2008. 2009th Edition. Hardcover. . . . . . Nº de ref. de la librería V9780387772431

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 93,41
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Irlanda a España
Destinos, gastos y plazos de envío

7.

Ewout Steyerberg
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Cantidad: 8
Librería
BWB
(Valley Stream, NY, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Depending on your location, this item may ship from the US or UK. Nº de ref. de la librería 97803877724310000000

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 93,87
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

8.

Ewout W. Steyerberg
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Tapa dura Cantidad: 8
Librería
Ria Christie Collections
(Uxbridge, Reino Unido)
Valoración
[?]

Descripción Hardback. Estado de conservación: New. Not Signed; Prediction models are important in various fields, including medicine, physics, meteorology, and finance. Prediction models will become more relevant in the medical field with the increase in knowledge on potential predictors of outcome, e.g. from genetics. Also, the number of applications will incr. book. Nº de ref. de la librería ria9780387772431_rkm

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 91,30
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,31
De Reino Unido a España
Destinos, gastos y plazos de envío

9.

Ewout Steyerberg
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Cantidad: 4
Librería
Speedy Hen
(London, Reino Unido)
Valoración
[?]

Descripción Estado de conservación: New. Bookseller Inventory # ST038777243X. Nº de ref. de la librería ST038777243X

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 72,97
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 23,10
De Reino Unido a España
Destinos, gastos y plazos de envío

10.

Steyerberg, Ewout
Editorial: Springer
ISBN 10: 038777243X ISBN 13: 9780387772431
Nuevos Tapa dura Cantidad: 8
Librería
Kennys Bookstore
(Olney, MD, Estados Unidos de America)
Valoración
[?]

Descripción Springer. Estado de conservación: New. Despite advances in statistical approaches towards clinical outcome prediction, these innovations are insufficiently utilized in medical research. This book provides information on how modern statistical concepts and regression methods can be applied. Series: Statistics for Biology and Health. Num Pages: 528 pages, biography. BIC Classification: MJA. Category: (P) Professional & Vocational. Dimension: 242 x 163 x 28. Weight in Grams: 936. . 2008. 2009th Edition. Hardcover. . . . . Books ship from the US and Ireland. Nº de ref. de la librería V9780387772431

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 100,35
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda