Support Vector Machines (Information Science and Statistics)

4,67 valoración promedio
( 6 valoraciones por Goodreads )
 
9780387772417: Support Vector Machines (Information Science and Statistics)
Ver todas las copias de esta edición ISBN.
 
 

Book by Steinwart Ingo Christmann Andreas

"Sinopsis" puede pertenecer a otra edición de este libro.

Críticas:

From the reviews:

“This book has many remarkable qualities which make it commendable to a large mathematical audience. ...It is probably the first book on this topic...which is genuinely aimed at a mathematician reader. No technical issue is avoided, and fine points like measurability, integrability, existence and regularity of solutions, etc., are addressed with due rigor and precision. ...The authors take special care to make the book self-contained and accessible to non-specialists...always including very detailed proofs for all results. A substantial appendix acts as a handy reference of fundamental results of analysis and probability needed throughout the book, even including a full proof of Talagrand’s concentration inequality. Many well-thought –out exercises very nicely complete each chapter. Finally, the book as a whole, though voluminous and presenting for the most part some very recent results, always stays very coherent to its choices and goals, and obviously a lot of effort has gone into a clear organization of the material. This work is bound to be recognized as a classic reference on this topic.” (MathSciNet)

“This book presents an extensive account of ... Support Vector Machines (SVMs). ... The book has many remarkable qualities which make it commendable to a large mathematical audience. First of all it is probably the first book on this topic ... which is genuinely aimed at a mathematician reader. ... Secondly, the authors take special care to make the book self contained and accessible to non-specialists ... . Many well thought-out exercises very nicely complete each chapter. ... a classic reference on this topic.” (Gilles Blanchard, Mathematical Reviews, Issue 2010 f)

“A mathematically elaborated topic of support vector machines in a book full with definitions and lemmas. It presents support vector machines (SVMs) as a successful modeling and prediction tool with different examples. This book has 12 chapters and 9 appendices that introduce also marginal applications of SVMs. ... This book is ... suitable as a textbook on SVMs for graduate courses ... .” (Adriana Horníková, Technometrics, Vol. 53 (2), May, 2011)

Reseña del editor:

Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Ingo Steinwart
Publicado por Springer-Verlag New York Inc. (2008)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Cantidad disponible: > 20
Impresión bajo demanda
Librería
Pbshop
(Wood Dale, IL, Estados Unidos de America)
Valoración
[?]

Descripción Springer-Verlag New York Inc., 2008. HRD. Condición: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: IQ-9780387772417

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 129,08
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Ingo Steinwart, Andreas Christmann
Publicado por Springer-Verlag New York Inc., United States (2008)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Tapa dura Cantidad disponible: 1
Librería
Book Depository International
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2008. Hardback. Condición: New. 2008 ed.. Language: English . Brand New Book. Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbo okwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others. Nº de ref. del artículo: LIB9780387772417

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 132,42
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Ingo Steinwart, Andreas Christmann
Publicado por Springer-Verlag New York Inc., United States (2008)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Tapa dura Cantidad disponible: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2008. Hardback. Condición: New. 2008 ed.. Language: English . Brand New Book. Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbo okwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others. Nº de ref. del artículo: LIB9780387772417

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 140,07
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Steinwart, Ingo
Publicado por Springer (2016)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Paperback Cantidad disponible: 1
Impresión bajo demanda
Librería
Ria Christie Collections
(Uxbridge, Reino Unido)
Valoración
[?]

Descripción Springer, 2016. Paperback. Condición: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. Nº de ref. del artículo: ria9780387772417_lsuk

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 141,50
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,40
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Ingo Steinwart, Andreas Christmann
Publicado por Springer New York 2008-08-12, New York (2008)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Tapa dura Cantidad disponible: 10
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción Springer New York 2008-08-12, New York, 2008. hardback. Condición: New. Nº de ref. del artículo: 9780387772417

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 145,70
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,84
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Ingo Steinwart; Andreas Christmann
Publicado por Springer (2008)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Tapa dura Cantidad disponible: 1
Librería
Valoración
[?]

Descripción Springer, 2008. Condición: New. Nº de ref. del artículo: L9780387772417

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 149,79
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 2,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Ingo Steinwart, Andreas Christmann
Publicado por Springer (2008)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Tapa dura Cantidad disponible: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción Springer, 2008. Hardcover. Condición: New. 2008. Nº de ref. del artículo: DADAX0387772413

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 150,97
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,07
A Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Ingo Steinwart
Publicado por Springer-Verlag Gmbh Aug 2008 (2008)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Cantidad disponible: 1
Librería
Valoración
[?]

Descripción Springer-Verlag Gmbh Aug 2008, 2008. Buch. Condición: Neu. Neuware - Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others. 602 pp. Englisch. Nº de ref. del artículo: 9780387772417

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 149,79
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 12,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Steinwart, Ingo
Publicado por Springer (2018)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Tapa dura Cantidad disponible: 20
Impresión bajo demanda
Librería
Murray Media
(North Miami Beach, FL, Estados Unidos de America)
Valoración
[?]

Descripción Springer, 2018. Hardcover. Condición: New. Never used! This item is printed on demand. Nº de ref. del artículo: 0387772413

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 161,49
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 1,62
A Estados Unidos de America
Destinos, gastos y plazos de envío

10.

INGO STEINWART
Publicado por Springer (2008)
ISBN 10: 0387772413 ISBN 13: 9780387772417
Nuevo Tapa dura Cantidad disponible: 1
Librería
Herb Tandree Philosophy Books
(Stroud, GLOS, Reino Unido)
Valoración
[?]

Descripción Springer, 2008. Hardback. Condición: NEW. 9780387772417 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. For all enquiries, please contact Herb Tandree Philosophy Books directly - customer service is our primary goal. Nº de ref. del artículo: HTANDREE0274514

Más información sobre este vendedor | Contactar al vendedor

Comprar nuevo
EUR 155,11
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 9,13
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda