Graduate mathematics students will find this book an easy-to-follow, step-by-step guide to the subject. Rotman's book gives a treatment of homological algebra which approaches the subject in terms of its origins in algebraic topology. In this new edition the book has been updated and revised throughout and new material on sheaves and cup products has been added. The author has also included material about homotopical algebra, alias K-theory. Learning homological algebra is a two-stage affair. First, one must learn the language of Ext and Tor. Second, one must be able to compute these things with spectral sequences. Here is a work that combines the two.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
With a wealth of examples as well as abundant applications to Algebra, this is a must-read work: a clearly written, easy-to-follow guide to Homological Algebra. The author provides a treatment of Homological Algebra which approaches the subject in terms of its origins in algebraic topology. In this brand new edition the text has been fully updated and revised throughout and new material on sheaves and abelian categories has been added.
Applications include the following:
* to rings -- Lazard's theorem that flat modules are direct limits of free modules, Hilbert's Syzygy Theorem, Quillen-Suslin's solution of Serre's problem about projectives over polynomial rings, Serre-Auslander-Buchsbaum characterization of regular local rings (and a sketch of unique factorization);
* to groups -- Schur-Zassenhaus, Gaschutz's theorem on outer automorphisms of finite p-groups, Schur multiplier, cotorsion groups;
* to sheaves -- sheaf cohomology, Cech cohomology, discussion of Riemann-Roch Theorem over compact Riemann surfaces.
Learning Homological Algebra is a two-stage affair. Firstly, one must learn the language of Ext and Tor, and what this describes. Secondly, one must be able to compute these things using a separate language: that of spectral sequences. The basic properties of spectral sequences are developed using exact couples. All is done in the context of bicomplexes, for almost all applications of spectral sequences involve indices. Applications include Grothendieck spectral sequences, change of rings, Lyndon-Hochschild-Serre sequence, and theorems of Leray and Cartan computing sheaf cohomology.
Joseph Rotman is Professor Emeritus of Mathematics at the University of Illinois at Urbana-Champaign. He is the author of numerous successful textbooks, including Advanced Modern Algebra (Prentice-Hall 2002), Galois Theory, 2nd Edition (Springer 1998) A First Course in Abstract Algebra (Prentice-Hall 1996), Introduction to the Theory of Groups, 4th Edition (Springer 1995), and Introduction to Algebraic Topology (Springer 1988).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 15,17 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 9,36 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Tyger Press PBFA, London, Reino Unido
Soft cover. Condición: Good. 8vo. softcover. [i-xiv]. 709pp. small indent leading edge upper wrapper otherwise a good copy. Nº de ref. del artículo: 15036
Cantidad disponible: 1 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9780387245270
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9780387245270
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9780387245270
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387245270_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Author supplies many examplesTraces development of terminologyProvides abundant applications to commutative algebraAuthor supplies many examplesTraces development of terminologyProvides abundant applications to comm. Nº de ref. del artículo: 5909402
Cantidad disponible: 3 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 5014742-n
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. Neuware -Graduate mathematics students will find this book an easy-to-follow, step-by-step guide to the subject. Rotman's book gives a treatment of homological algebra which approaches the subject in terms of its origins in algebraic topology. In this new edition the book has been updated and revised throughout and new material on sheaves and cup products has been added. The author has also included material about homotopical algebra, alias K-theory. Learning homological algebra is a two-stage affair. First, one must learn the language of Ext and Tor. Second, one must be able to compute these things with spectral sequences. Here is a work that combines the two. 709 pp. Englisch. Nº de ref. del artículo: 9780387245270
Cantidad disponible: 1 disponibles
Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. Neuware -Homological Algebra has grown in the nearly three decades since the rst e- tion of this book appeared in 1979. Two books discussing more recent results are Weibel, An Introduction to Homological Algebra, 1994, and Gelfand- Manin, Methods of Homological Algebra, 2003. In their Foreword, Gelfand and Manin divide the history of Homological Algebra into three periods: the rst period ended in the early 1960s, culminating in applications of Ho- logical Algebra to regular local rings. The second period, greatly in uenced by the work of A. Grothendieck and J. -P. Serre, continued through the 1980s; it involves abelian categories and sheaf cohomology. The third period, - volving derived categories and triangulated categories, is still ongoing. Both of these newer books discuss all three periods (see also Kashiwara-Schapira, Categories and Sheaves). The original version of this book discussed the rst period only; this new edition remains at the same introductory level, but it now introduces thesecond period as well. This change makes sense pe- gogically, for there has been a change in the mathematics population since 1979; today, virtually all mathematics graduate students have learned so- thing about functors and categories, and so I can now take the categorical viewpoint more seriously. When I was a graduate student, Homological Algebra was an unpopular subject. The general attitude was that it was a grotesque formalism, boring to learn, and not very useful once one had learned it. 710 pp. Englisch. Nº de ref. del artículo: 9780387245270
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 5014742-n
Cantidad disponible: 3 disponibles