Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference:
Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.
"Sinopsis" puede pertenecer a otra edición de este libro.
Johan A.K. Suykens is a professor at Katholieke Universiteit Leuven, Belgium, where he obtained a degree in electro-mechanical engineering and a Ph.D in applied sciences. He has been a visiting postdoctoral researcher at the University of California, Berkeley, USA, and a postdoctoral researcher with the Fonds Wetenschappelijk Onderzoek - Vlaanderen, Belgium. A senior IEEE member, he has co/authored and edited several books; received many prestigious awards; directed, co/organized, and co/chaired numerous international conferences; and served as associate editor for the IEEE Transactions on Circuits and Systems and the IEEE Transactions on Neural Networks.
Marco Signoretto is currently a visiting lecturer at the Centre for Computational Statistics and Machine Learning (CSML), University College London, UK, in the framework of a postdoctoral fellowship with the Belgian Fund for Scientific Research (FWO). He holds a Ph.D in mathematical engineering from Katholieke Universiteit Leuven, Belgium; a degree in electronic engineering (Laurea Magistralis) from the University of Padova, Italy; and an M.Sc in methods for management of complex systems from the University of Pavia, Italy. His research interests include practical and theoretical aspects of mathematical modeling of structured data, with special focus on multivariate time-series, networks, and dynamical systems. His current work deals with methods based on (convex) optimization, structure-inducing penalties, and spectral regularization.
Andreas Argyriou has received degrees in computer science from the Massachusetts Institute of Technology, Cambridge, USA, and a Ph.D in computer science from University College London (UCL), UK. The topic of his Ph.D work has been on machine learning methodologies integrating multiple tasks and data sources. He has held postdoctoral and research faculty positions at UCL; Toyota Technological Institute at Chicago, Illinois, USA; and Katholieke Universiteit Leuven, Belgium. He is currently serving an RBUCE-UP fellowship at École Centrale Paris, France. His current interests are in the areas of kernel methods, multitask learning, compressed sensing, and convex optimization methods.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 16,98 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 10,28 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 525. Nº de ref. del artículo: 383034679
Cantidad disponible: 3 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 525. Nº de ref. del artículo: 26379788008
Cantidad disponible: 4 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 41720080
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 41720080
Cantidad disponible: 10 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 525 pages. 9.25x6.14x1.18 inches. In Stock. Nº de ref. del artículo: __0367658984
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 791. Nº de ref. del artículo: B9780367658984
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 41720080-n
Cantidad disponible: 10 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 525. Nº de ref. del artículo: 18379788002
Cantidad disponible: 4 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 41720080-n
Cantidad disponible: 10 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Johan A.K. Suykens is a professor at Katholieke Universiteit Leuven, Belgium, where he obtained a degree in electro-mechanical engineering and a Ph.D in applied sciences. He has been a visiting postdoctoral researcher at the University o. Nº de ref. del artículo: 395500919
Cantidad disponible: Más de 20 disponibles