The book reviews core concepts of machine learning (ML) while focusing on modern applications. It is aimed at those who want to advance their understanding of ML by providing technical and practical insights. It does not use complicated mathematics to explain how to benefit from ML algorithms. Unlike the existing literature, this work provides the core concepts with emphasis on fresh ideas and real application scenarios. It starts with the basic concepts of ML and extends the concepts to the different deep learning algorithms. The book provides an introduction and main elements of evaluation tools with Python and walks you through the recent applications of ML in self-driving cars, cognitive decision making, communication networks, security, and signal processing. The concept of generative networks is also presented and focuses on GANs as a tool to improve the performance of existing algorithms.
In summary, this book provides a comprehensive technological path from fundamental theories to the categorization of existing algorithms, covers state-of-the-art, practical evaluation tools and methods to empower you to use synthetic data to improve the performance of applications.
"Sinopsis" puede pertenecer a otra edición de este libro.
Seyedeh Leili Mirtaheri is an assistant professor in the Electrical and Computer Engineering Department at Kharazmi University. She holds PhD degrees in computer engineering and also in operations research. She has authored several journal articles and conference proceedings and has also been an author/editor of several books. She has been a guest editor of the Journal of Supercomputing and also the reviewer of many credible journals.
Reza Shahbazian is an assistant professor of Standard Research Institute (Iran) and researcher at Unical. He holds PhD degrees in telecommunications and computer science. He has served as a postdoc researcher on applications of machine learning in telecommunication networks. He has authored several articles in journals and conference proceedings, book chapters and also authored or edited five books.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,16 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 9,28 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9780367634537
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780367634537_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-GRD-9780367634537
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44614272-n
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 401655714
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Seyedeh Leili Mirtaheri is an assistant professor in the Electrical and Computer Engineering Department at Kharazmi University. She holds PhD degrees in computer engineering and also in operations research. She has authored several journ. Nº de ref. del artículo: 639175218
Cantidad disponible: 2 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Nº de ref. del artículo: V9780367634537
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26394754173
Cantidad disponible: 3 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The book reviews core concepts of machine learning (ML) while focusing on modern applications. It is aimed at those who want to advance their understanding of ML by providing technical and practical insights. It does not use complicated mathematics to explain how to benefit from ML algorithms. Unlike the existing literature, this work provides the core concepts with emphasis on fresh ideas and real application scenarios. It starts with the basic concepts of ML and extends the concepts to the different deep learning algorithms. The book provides an introduction and main elements of evaluation tools with Python and walks you through the recent applications of ML in self-driving cars, cognitive decision making, communication networks, security, and signal processing. The concept of generative networks is also presented and focuses on GANs as a tool to improve the performance of existing algorithms.In summary, this book provides a comprehensive technological path from fundamental theories to the categorization of existing algorithms, covers state-of-the-art, practical evaluation tools and methods to empower you to use synthetic data to improve the performance of applications. Nº de ref. del artículo: 9780367634537
Cantidad disponible: 2 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9780367634537
Cantidad disponible: Más de 20 disponibles