The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions.
"Sinopsis" puede pertenecer a otra edición de este libro.
Mahlet Tadesse is Professor and Chair in the Department of Mathematics and Statistics at Georgetown University, USA. Her research over the past two decades has focused on Bayesian modeling for high-dimensional data with an emphasis on variable selection methods and mixture models. She also works on various interdisciplinary projects in genomics and public health. She is a recipient of the Myrto Lefkopoulou Distinguished Lectureship award, an elected member of the International Statistical Institute and an elected fellow of the American Statistical Association.
Marina Vannucci is Noah Harding Professor of Statistics at Rice University, USA. Her research over the past 25 years has focused on the development of methodologies for Bayesian variable selection in linear settings, mixture models and graphical models, and on related computational algorithms. She also has a solid history of scientific collaborations and is particularly interested in applications of Bayesian inference to genomics and neuroscience. She has received an NSF CAREER award and the Mitchell prize by ISBA for her research, and the Zellner Medal by ISBA for exceptional service over an extended period of time with long-lasting impact. She is an elected Member of ISI and RSS and an elected fellow of ASA, IMS, AAAS and ISBA.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,38 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 10,34 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Majestic Books, Hounslow, Reino Unido
Condición: New. pages cm. Nº de ref. del artículo: 398691774
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pages cm First edition Includes bibliographical references and index. Nº de ref. del artículo: 26397685345
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 500. Nº de ref. del artículo: B9780367543785
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 47201421-n
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed.The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions.Features:Provides a comprehensive review of methods and applications of Bayesian variable selection.Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection.Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field.Supported by a website with code, data, and other supplementary material 492 pp. Englisch. Nº de ref. del artículo: 9780367543785
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 47201421-n
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mahlet Tadesse is Professor and Chair in the Department of Mathematics and Statistics at Georgetown University, USA. Her research over the past two decades has focused on Bayesian modeling for high-dimensional data with an emphasis on va. Nº de ref. del artículo: 1241774559
Cantidad disponible: Más de 20 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-391041
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47201421
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9780367543785
Cantidad disponible: Más de 20 disponibles