Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors, both of whom have contributed significantly to the field, develop the classification theory for integrable systems with two degrees of freedom. This theory allows one to distinguish such systems up to two natural equivalence relations: the equivalence of the associated foliation into Liouville tori and the usual orbital equaivalence. The authors show that in both cases, one can find complete sets of invariants that give the solution of the classification problem. The first part of the book systematically presents the general construction of these invariants, including many examples and applications. In the second part, the authors apply the general methods of the classification theory to the classical integrable problems in rigid body dynamics and describe their topological portraits, bifurcations of Liouville tori, and local and global topological invariants. They show how the classification theory helps find hidden isomorphisms between integrable systems and present as an example their proof that two famous systems--the Euler case in rigid body dynamics and the Jacobi problem of geodesics on the ellipsoid--are orbitally equivalent. Integrable Hamiltonian Systems: Geometry, Topology, Classification offers a unique opportunity to explore important, previously unpublished results and acquire generally applicable techniques and tools that enable you to work with a broad class of integrable systems.
"Sinopsis" puede pertenecer a otra edición de este libro.
Bolsinov, A.V.; Fomenko, A.T.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 16,97 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 9,26 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9780367394509
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 189. Nº de ref. del artículo: B9780367394509
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 37656626-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780367394509_new
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 752. Nº de ref. del artículo: 380450273
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 752 pages. 9.00x6.00x1.75 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0367394502
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 37656626
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 37656626
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9780367394509
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - This volume describes and fully illustrates both the theory and applications of integrable Hamiltonian systems. Exploring the basic elements of Liouville functions and their singularities, it systematically classifies such systems for the case of integrable Hamiltonian systems with two degrees of freedom. It also describes the nontrivial connections between this theory and three-dimensional topology and gives a topological description of the behavior of integral trajectories under Liouville tori bifurcation. Integrable Hamiltonian Systems: Geometry, Topology, Classification will appeal to graduate students of mathematics and mathematicians working in the theory of dynamical systems and their applications. Nº de ref. del artículo: 9780367394509
Cantidad disponible: 1 disponibles