Artículos relacionados a Introduction to Bayesian Data Analysis for Cognitive...

Introduction to Bayesian Data Analysis for Cognitive Science (Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences) - Tapa dura

 
9780367358518: Introduction to Bayesian Data Analysis for Cognitive Science (Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences)

Sinopsis

This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g., linguistics, psycholinguistics, psychology, computer science), with a particular focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms, which is a front-end to Stan. The book only assumes that the reader is familiar with the statistical programming language R, and has basic high school exposure to pre-calculus mathematics; some of the important mathematical constructs needed for the book are introduced in the first chapter.

Through this book, the reader will be able to develop a practical ability to apply Bayesian modeling within their own field. The book begins with an informal introduction to foundational topics such as probability theory, and univariate and bi-/multivariate discrete and continuous random variables. Then, the application of Bayes' rule for statistical inference is introduced with several simple analytical examples that require no computing software; the main insight here is that the posterior distribution of a parameter is a compromise between the prior and the likelihood functions. The book then gradually builds up the regression framework using the brms package in R, ultimately leading to hierarchical regression modeling (aka the linear mixed model). Along the way, there is detailed discussion about the topic of prior selection, and developing a well-defined workflow. Later chapters introduce the Stan programming language, and cover advanced topics using practical examples: contrast coding, model comparison using Bayes factors and cross-validation, hierarchical models and reparameterization, defining custom distributions, measurement error models and meta-analysis, and finally, some examples of cognitive models: multinomial processing trees, finite mixture models, and accumulator models. Additional chapters, appendices, and exercises are provided as online materials and can be accessed here: https://github.com/bnicenboim/bayescogsci.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Bruno Nicenboim is assistant professor in the department of Cognitive Science and Artificial Intelligence at Tilburg University in the Netherlands, working within the area of computational psycholinguistics.

Daniel J. Schad is a cognitive psychologist and is professor of Quantitative Methods at the HMU Health
and Medical University in Potsdam, Germany.

Shravan Vasishth is professor of psycholinguistics at the department of Linguistics at the University of Potsdam, Germany; he is a chartered statistician (Royal Statistical Society, UK).

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 31,62 gastos de envío desde Australia a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9780367359331: Introduction to Bayesian Data Analysis for Cognitive Science (Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences)

Edición Destacada

ISBN 10:  0367359332 ISBN 13:  9780367359331
Editorial: Chapman and Hall/CRC, 2025
Tapa blanda

Resultados de la búsqueda para Introduction to Bayesian Data Analysis for Cognitive...

Imagen de archivo

Bruno Nicenboim
Publicado por Taylor & Francis Ltd, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g., linguistics, psycholinguistics, psychology, computer science), with a particular focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms, which is a front-end to Stan. The book only assumes that the reader is familiar with the statistical programming language R, and has basic high school exposure to pre-calculus mathematics; some of the important mathematical constructs needed for the book are introduced in the first chapter.Through this book, the reader will be able to develop a practical ability to apply Bayesian modeling within their own field. The book begins with an informal introduction to foundational topics such as probability theory, and univariate and bi-/multivariate discrete and continuous random variables. Then, the application of Bayes' rule for statistical inference is introduced with several simple analytical examples that require no computing software; the main insight here is that the posterior distribution of a parameter is a compromise between the prior and the likelihood functions. The book then gradually builds up the regression framework using the brms package in R, ultimately leading to hierarchical regression modeling (aka the linear mixed model). Along the way, there is detailed discussion about the topic of prior selection, and developing a well-defined workflow. Later chapters introduce the Stan programming language, and cover advanced topics using practical examples: contrast coding, model comparison using Bayes factors and cross-validation, hierarchical models and reparameterization, defining custom distributions, measurement error models and meta-analysis, and finally, some examples of cognitive models: multinomial processing trees, finite mixture models, and accumulator models. Additional chapters, appendices, and exercises are provided as online materials and can be accessed here: This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g. linguistics, psycholinguistics, psychology, computer science) with a focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780367358518

Contactar al vendedor

Comprar nuevo

EUR 155,18
Convertir moneda
Gastos de envío: EUR 31,62
De Australia a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Bruno Nicenboim (Department of Cognitive Science and Artificial Intelligence at Tilburg University in the Netherlands)|Daniel J. Schad (Cognitive psychologist and Professor of Quantitative Methods at the HMU Health and Medical University in Potsdam, Germ
Publicado por CRC Press, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Bruno Nicenboim is assistant professor in the department of Cognitive Science and Artificial Intelligence at Tilburg University in the Netherlands, working within the area of computational psycholinguistics.Daniel J. Schad is a cogni. Nº de ref. del artículo: 2157043294

Contactar al vendedor

Comprar nuevo

EUR 168,11
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Publicado por Chapman and Hall/CRC, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9780367358518

Contactar al vendedor

Comprar nuevo

EUR 174,75
Convertir moneda
Gastos de envío: EUR 25,62
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Publicado por Chapman and Hall/CRC, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 409306342

Contactar al vendedor

Comprar nuevo

EUR 192,77
Convertir moneda
Gastos de envío: EUR 10,22
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Publicado por Chapman and Hall/CRC, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780367358518_new

Contactar al vendedor

Comprar nuevo

EUR 205,74
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Publicado por Chapman and Hall/CRC, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9780367358518

Contactar al vendedor

Comprar nuevo

EUR 208,59
Convertir moneda
Gastos de envío: EUR 6,84
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Publicado por Chapman and Hall/CRC, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26403847993

Contactar al vendedor

Comprar nuevo

EUR 209,37
Convertir moneda
Gastos de envío: EUR 9,83
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Nicenboim, Bruno; Schad, Daniel J.; Vasishth, Shravan
Publicado por Chapman and Hall/CRC, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 18403847987

Contactar al vendedor

Comprar nuevo

EUR 217,52
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Bruno Nicenboim
Publicado por Taylor & Francis Ltd, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g., linguistics, psycholinguistics, psychology, computer science), with a particular focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms, which is a front-end to Stan. The book only assumes that the reader is familiar with the statistical programming language R, and has basic high school exposure to pre-calculus mathematics; some of the important mathematical constructs needed for the book are introduced in the first chapter.Through this book, the reader will be able to develop a practical ability to apply Bayesian modeling within their own field. The book begins with an informal introduction to foundational topics such as probability theory, and univariate and bi-/multivariate discrete and continuous random variables. Then, the application of Bayes' rule for statistical inference is introduced with several simple analytical examples that require no computing software; the main insight here is that the posterior distribution of a parameter is a compromise between the prior and the likelihood functions. The book then gradually builds up the regression framework using the brms package in R, ultimately leading to hierarchical regression modeling (aka the linear mixed model). Along the way, there is detailed discussion about the topic of prior selection, and developing a well-defined workflow. Later chapters introduce the Stan programming language, and cover advanced topics using practical examples: contrast coding, model comparison using Bayes factors and cross-validation, hierarchical models and reparameterization, defining custom distributions, measurement error models and meta-analysis, and finally, some examples of cognitive models: multinomial processing trees, finite mixture models, and accumulator models. Additional chapters, appendices, and exercises are provided as online materials and can be accessed here: This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g. linguistics, psycholinguistics, psychology, computer science) with a focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780367358518

Contactar al vendedor

Comprar nuevo

EUR 224,30
Convertir moneda
Gastos de envío: EUR 34,66
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Bruno Nicenboim
Publicado por Taylor & Francis Ltd, 2025
ISBN 10: 0367358514 ISBN 13: 9780367358518
Nuevo Tapa dura

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g., linguistics, psycholinguistics, psychology, computer science), with a particular focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms, which is a front-end to Stan. The book only assumes that the reader is familiar with the statistical programming language R, and has basic high school exposure to pre-calculus mathematics; some of the important mathematical constructs needed for the book are introduced in the first chapter.Through this book, the reader will be able to develop a practical ability to apply Bayesian modeling within their own field. The book begins with an informal introduction to foundational topics such as probability theory, and univariate and bi-/multivariate discrete and continuous random variables. Then, the application of Bayes' rule for statistical inference is introduced with several simple analytical examples that require no computing software; the main insight here is that the posterior distribution of a parameter is a compromise between the prior and the likelihood functions. The book then gradually builds up the regression framework using the brms package in R, ultimately leading to hierarchical regression modeling (aka the linear mixed model). Along the way, there is detailed discussion about the topic of prior selection, and developing a well-defined workflow. Later chapters introduce the Stan programming language, and cover advanced topics using practical examples: contrast coding, model comparison using Bayes factors and cross-validation, hierarchical models and reparameterization, defining custom distributions, measurement error models and meta-analysis, and finally, some examples of cognitive models: multinomial processing trees, finite mixture models, and accumulator models. Additional chapters, appendices, and exercises are provided as online materials and can be accessed here: This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g. linguistics, psycholinguistics, psychology, computer science) with a focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780367358518

Contactar al vendedor

Comprar nuevo

EUR 220,79
Convertir moneda
Gastos de envío: EUR 64,09
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 1 copia(s) de este libro

Ver todos los resultados de su búsqueda