Review of the First Edition:
The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis... A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.
-Journal of Applied Statistics
Statistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.
What's New in the Second Edition:
Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ding-Geng (Din) Chen is a fellow of American Statistical Association and currently the Wallace H. Kuralt Distinguished Professor at the University of North Carolina-Chapel Hill, USA. Formerly, he was a Professor of Biostatistics at the University of Rochester, New York, USA, the Karl E. Peace Endowed Eminent Scholar Chair and professor in Biostatistics in the Jiann-Ping Hsu College of Public Health at Georgia Southern University, USA, and a professor of statistics at South Dakota Stata University, USA. Dr. Chen’s research interests include clinical trial biostatistical methodological development in Bayesian models, survival analysis, multi-level modelling and longitudinal data analysis, and statistical meta-analysis. He has published more than 200 refereed papers and co-authored/co-edited 30 book in statistics.
Karl E. Peace is the Georgia Cancer Coalition Distinguished Cancer Scholar, Founding Director of the Center for Biostatistics, Professor of Biostatistics, and Senior Research Scientist in the Jiann-Ping Hsu College of Public Health at Georgia Southern University (GSU). Dr. Peace has made pivotal contributions in the development and approval of drugs to treat numerous diseases and disorders. A fellow of the ASA, he has been a recipient of many honors, including the Drug Information Association Outstanding Service Award, the American Public Health Association Statistics Section Award, The First recipient of the President’s Medal for outstanding contributions to GSU, and recognition by the Georgia and US Houses of Representatives, and the Virginia House of Delegates.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 66,09 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-7097
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-TNFPD-9780367183837
Cantidad disponible: 5 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-79801
Cantidad disponible: 5 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 456. Nº de ref. del artículo: 26384695723
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 456. Nº de ref. del artículo: 379208308
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 456. Nº de ref. del artículo: 18384695713
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Ding-Geng (Din) Chen is a fellow of American Statistical Association and currently the Wallace H. Kuralt Distinguished Professor at the University of North Carolina-Chapel Hill, USA. Formerly, he was a Professor of Biostatistics at the U. Nº de ref. del artículo: 417369137
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 185. Nº de ref. del artículo: B9780367183837
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Review of the First Edition:The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis.A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.-Journal of Applied StatisticsStatistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.What's New in the Second Edition:Adds Stata programs along with the R programs for meta-analysisUpdates all the statistical meta-analyses with R/Stata programsCovers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs MA-SSAdds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MASuitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry. 424 pp. Englisch. Nº de ref. del artículo: 9780367183837
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Review of the First Edition:The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis.A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.-Journal of Applied StatisticsStatistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.What's New in the Second Edition:Adds Stata programs along with the R programs for meta-analysisUpdates all the statistical meta-analyses with R/Stata programsCovers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs MA-SSAdds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MASuitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry. Nº de ref. del artículo: 9780367183837
Cantidad disponible: 2 disponibles