Artículos relacionados a Approximation and Weak Convergence Methods for Random...

Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory (Signal Processing, Optimization, and Control) - Tapa blanda

 
9780262512183: Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory (Signal Processing, Optimization, and Control)

Reseña del editor

Control and communications engineers, physicists, and probability theorists, among others, will find this book unique. It contains a detailed development of approximation and limit theorems and methods for random processes and applies them to numerous problems of practical importance. In particular, it develops usable and broad conditions and techniques for showing that a sequence of processes converges to a Markov diffusion or jump process. This is useful when the natural physical model is quite complex, in which case a simpler approximation la diffusion process, for example) is usually made. The book simplifies and extends some important older methods and develops some powerful new ones applicable to a wide variety of limit and approximation problems. The theory of weak convergence of probability measures is introduced along with general and usable methods (for example, perturbed test function, martingale, and direct averaging) for proving tightness and weak convergence. Kushner's study begins with a systematic development of the method. It then treats dynamical system models that have state-dependent noise or nonsmooth dynamics. Perturbed Liapunov function methods are developed for stability studies of nonMarkovian problems and for the study of asymptotic distributions of non-Markovian systems. Three chapters are devoted to applications in control and communication theory (for example, phase-locked loops and adoptive filters). Smallnoise problems and an introduction to the theory of large deviations and applications conclude the book. This book is the sixth in The MIT Press Series in Signal Processing, Optimization, and Control, edited by Alan S. Willsky.

Biografía del autor

Harold J. Kushner is Professor of Applied Mathematics and Engineering at Brown University and is one of the leading researchers in the area of stochastic processes concerned with analysis and synthesis in control and communications theory.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialMIT Press
  • Año de publicación2008
  • ISBN 10 0262512181
  • ISBN 13 9780262512183
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas294

Comprar nuevo

Ver este artículo

EUR 11,89 gastos de envío desde Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9780262110907: Approximation and Weak Convergence Methods for Random Process with Applications to Stochastic Systems Theory

Edición Destacada

ISBN 10:  0262110903 ISBN 13:  9780262110907
Editorial: MIT Press, 1984
Tapa dura

Resultados de la búsqueda para Approximation and Weak Convergence Methods for Random...

Imagen de archivo

Kushner, Harold J.
Publicado por Mit Pr, 1984
ISBN 10: 0262512181 ISBN 13: 9780262512183
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 287 pages. 9.00x6.00x0.90 inches. In Stock. Nº de ref. del artículo: zk0262512181

Contactar al vendedor

Comprar nuevo

EUR 57,93
Convertir moneda
Gastos de envío: EUR 11,89
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito