Book by None
"Sinopsis" puede pertenecer a otra edición de este libro.
An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Bruckner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Muller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schoelkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama
Joaquin Quinonero-Candela is a Researcher in the Online Services and Advertising Group at Microsoft Research Cambridge, U.K. Masashi Sugiyama is Associate Professor in the Department of Computer Science at Tokyo Institute of Technology. Anton Schwaighofer is an Applied Researcher in the Online Services and Advertising Group at Microsoft Research, Cambridge, U.K. Neil D. Lawrence is Senior Lecturer and Member of the Machine Learning and Optimisation Research Group in the School of Computer Science at the University of Manchester. Masashi Sugiyama is Associate Professor in the Department of Computer Science at Tokyo Institute of Technology. Klaus-Robert Muller is Head of the Intelligent Data Analysis group at the Fraunhofer Institute and Professor in the Department of Computer Science at the Technical University of Berlin. Alexander J. Smola is Senior Principal Researcher and Machine Learning Program Leader at National ICT Australia/Australian National University, Canberra. Bernhard Schoelkopf is Director at the Max Planck Institute for Intelligent Systems in Tubingen, Germany. He is coauthor of Learning with Kernels (2002) and is a coeditor of Advances in Kernel Methods: Support Vector Learning (1998), Advances in Large-Margin Classifiers (2000), and Kernel Methods in Computational Biology (2004), all published by the MIT Press.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,51 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoGRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Bellwetherbooks, McKeesport, PA, Estados Unidos de America
hardcover. Condición: As New. Illustrated. LIKE NEW!!! Has a red or black remainder mark on bottom/exterior edge of pages. Nº de ref. del artículo: HC-MIT-LN-0262170051
Cantidad disponible: 4 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 45913148-6
Cantidad disponible: 1 disponibles
Librería: Autumn Leaves Books, Crown Point, IN, Estados Unidos de America
Hardcover. Condición: Near Fine. Estado de la sobrecubierta: Near Fine. 1st Edition. Date on copy right is 2009 and has "1" on the number line. Interior pages are clean and bright; binding is firm - no loose pages. There are no tears, writing or folds on inside pages. . This NOT an Ex-lib; A remainder- mark on bottom edge. DJ bright and clean with light shelf wear. Not price clipped . Nº de ref. del artículo: 000610
Cantidad disponible: 1 disponibles
Librería: Goodvibes Books, STAFFORD, TX, Estados Unidos de America
Condición: New. New Book. Nº de ref. del artículo: 0262170051-SBX
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-69976
Cantidad disponible: 5 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-211730
Cantidad disponible: 1 disponibles
Librería: JuddSt.Pancras, London, Reino Unido
Hardcover. Condición: As New. Estado de la sobrecubierta: As New. Nº de ref. del artículo: c43194
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. xv + 229. Nº de ref. del artículo: 26692934
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. xv + 229 Illus. Nº de ref. del artículo: 8203545
Cantidad disponible: 1 disponibles
Librería: Harmonium Books, Philadelphia, PA, Estados Unidos de America
Hardcover. Condición: New. New large hardback w/ jacket. Nº de ref. del artículo: ABE-1601866926431
Cantidad disponible: 1 disponibles