Artículos relacionados a The Minimum Description Length Principle (Adaptive...

The Minimum Description Length Principle (Adaptive Computation and Machine Learning Series) - Tapa dura

 
9780262072816: The Minimum Description Length Principle (Adaptive Computation and Machine Learning Series)

Sinopsis

The minimum description length (MDL) principle is a powerful method of inductive inference, the basis of statistical modeling, pattern recognition, and machine learning. It holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data. MDL methods are particularly well-suited for dealing with model selection, prediction, and estimation problems in situations where the models under consideration can be arbitrarily complex, and overfitting the data is a serious concern.This extensive, step-by-step introduction to the MDL Principle provides a comprehensive reference (with an emphasis on conceptual issues) that is accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection, including biology, econometrics, and experimental psychology. Part I provides a basic introduction to MDL and an overview of the concepts in statistics and information theory needed to understand MDL. Part II treats universal coding, the information-theoretic notion on which MDL is built, and part III gives a formal treatment of MDL theory as a theory of inductive inference based on universal coding. Part IV provides a comprehensive overview of the statistical theory of exponential families with an emphasis on their information-theoretic properties. The text includes a number of summaries, paragraphs offering the reader a "fast track" through the material, and boxes highlighting the most important concepts.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

The minimum description length (MDL) principle is a powerful method of inductive inference, the basis of statistical modeling, pattern recognition, and machine learning. It holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data. MDL methods are particularly well-suited for dealing with model selection, prediction, and estimation problems in situations where the models under consideration can be arbitrarily complex, and overfitting the data is a serious concern.This extensive, step-by-step introduction to the MDL Principle provides a comprehensive reference (with an emphasis on conceptual issues) that is accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection, including biology, econometrics, and experimental psychology. Part I provides a basic introduction to MDL and an overview of the concepts in statistics and information theory needed to understand MDL. Part II treats universal coding, the information-theoretic notion on which MDL is built, and part III gives a formal treatment of MDL theory as a theory of inductive inference based on universal coding. Part IV provides a comprehensive overview of the statistical theory of exponential families with an emphasis on their information-theoretic properties. The text includes a number of summaries, paragraphs offering the reader a "fast track" through the material, and boxes highlighting the most important concepts.

Biografía del autor

Peter D. Grunwald is a researcher at CWI, the National Research Institute for Mathematics and Computer Science, Amsterdam, the Netherlands. He is also affiliated with EURANDOM, the European Research Institute for the Study of Stochastic Phenomena, Eindhoven, the Netherlands.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
Connecting readers with great books...
Ver este artículo

EUR 3,18 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 5,89 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9780262529631: The Minimum Description Length Principle (Adaptive Computation and Machine Learning series)

Edición Destacada

ISBN 10:  0262529637 ISBN 13:  9780262529631
Editorial: MIT Press, 2007
Tapa blanda

Resultados de la búsqueda para The Minimum Description Length Principle (Adaptive...

Imagen de archivo

Peter D. Grunwald
Publicado por The MIT Press, 2007
ISBN 10: 0262072815 ISBN 13: 9780262072816
Antiguo o usado Tapa dura

Librería: HPB-Red, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_399551693

Contactar al vendedor

Comprar usado

EUR 32,39
Convertir moneda
Gastos de envío: EUR 3,18
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Grunwald, Peter D
Publicado por MIT Press, 2007
ISBN 10: 0262072815 ISBN 13: 9780262072816
Antiguo o usado Tapa dura

Librería: WeBuyBooks, Rossendale, LANCS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: wbs1495639940

Contactar al vendedor

Comprar usado

EUR 85,20
Convertir moneda
Gastos de envío: EUR 10,48
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Peter D. Grunwald; Jorma Rissanen [Foreword]
Publicado por The MIT Press, 2007
ISBN 10: 0262072815 ISBN 13: 9780262072816
Nuevo Tapa dura

Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-0262072815

Contactar al vendedor

Comprar nuevo

EUR 133,25
Convertir moneda
Gastos de envío: EUR 5,89
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Peter D. Grunwald
Publicado por Mit Pr, 2007
ISBN 10: 0262072815 ISBN 13: 9780262072816
Nuevo Tapa dura

Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Nº de ref. del artículo: Scanned0262072815

Contactar al vendedor

Comprar nuevo

EUR 310,75
Convertir moneda
Gastos de envío: EUR 3,64
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito