Empirical Methods for Artificial Intelligence (Bradford Books)

4,5 valoración promedio
( 6 valoraciones por GoodReads )
 
9780262032254: Empirical Methods for Artificial Intelligence (Bradford Books)
From the Publisher:

Computer science and artificial intelligence in particular have no curriculum in research methods, as other sciences do. This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Although many of these techniques are statistical, the book discusses statistics in the context of the broader empirical enterprise. The first three chapters introduce empirical questions, exploratory data analysis, and experiment design. The blunt interrogation of statistical hypothesis testing is postponed until chapters 4 and 5, which present classical parametric methods and computer-intensive (Monte Carlo) resampling methods, respectively. This is one of few books to present these new, flexible resampling techniques in an accurate, accessible manner.Much of the book is devoted to research strategies and tactics, introducing new methods in the context of case studies. Chapter 6 covers performance assessment, chapter 7 shows how to identify interactions and dependencies among several factors that explain performance, and chapter 8 discusses predictive models of programs, including causal models. The final chapter asks what counts as a theory in AI, and how empirical methods -- which deal with specific systems -- can foster general theories.Mathematical details are confined to appendixes and no prior knowledge of statistics or probability theory is assumed. All of the examples can be analyzed by hand or with commercially available statistics packages.The Common Lisp Analytical Statistics Package (CLASP), developed in the author's laboratory for Unix and Macintosh computers, is available from The MIT Press.A Bradford Book

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Cohen, Paul R.
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Cantidad: 2
Librería
LVeritas
(Newton, MA, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Publishers overstock copy, might have a small remainder mark to the bottom page-ends. Else, gift Quality item in excellent condition. Nº de ref. de la librería 36S98W000T7Q

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 66,52
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 0,93
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Cohen, Paul R.
Editorial: A Bradford Book (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Tapa dura Cantidad: 1
Librería
Book Deals
(Lewiston, NY, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book, 1995. Estado de conservación: New. Brand New, Unread Copy in Perfect Condition. A+ Customer Service! Summary: This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Nº de ref. de la librería ABE_book_new_0262032252

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 81,74
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Cohen, Paul R.
Editorial: A Bradford Book (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Tapa dura Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book, 1995. Hardcover. Estado de conservación: New. book. Nº de ref. de la librería 0262032252

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 81,76
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Cohen, Paul R.
Editorial: A Bradford Book (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Tapa dura Primera edición Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book, 1995. Hardcover. Estado de conservación: New. First Edition. Nº de ref. de la librería DADAX0262032252

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 84,16
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,71
A Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Cohen, Paul R.
Editorial: MIT Press
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Cantidad: > 20
Librería
INDOO
(Avenel, NJ, Estados Unidos de America)
Valoración
[?]

Descripción MIT Press. Estado de conservación: New. Brand New. Nº de ref. de la librería 0262032252

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 87,31
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Cohen, Paul R.
Editorial: A Bradford Book
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Tapa dura Cantidad: 4
Librería
Movie Mars
(Indian Trail, NC, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book. Hardcover. Estado de conservación: New. 0262032252 Brand New Book. Ships from the United States. 30 Day Satisfaction Guarantee!. Nº de ref. de la librería 12796970

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 99,10
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,71
A Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Cohen, Paul R.
Editorial: A Bradford Book 1995-08-03 (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Tapa dura Primera edición Cantidad: 1
Librería
Lost Books
(AUSTIN, TX, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book 1995-08-03, 1995. Hardcover. Estado de conservación: New. First Edition. 0262032252. Nº de ref. de la librería 669706

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 99,11
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,71
A Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Cohen, Paul R.
Editorial: MIT Press Ltd, United States (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 1995. Hardback. Estado de conservación: New. 229 x 206 mm. Language: English . Brand New Book. Computer science and artificial intelligence in particular have no curriculum in research methods, as other sciences do. This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Although many of these techniques are statistical, the book discusses statistics in the context of the broader empirical enterprise. The first three chapters introduce empirical questions, exploratory data analysis, and experiment design. The blunt interrogation of statistical hypothesis testing is postponed until chapters 4 and 5, which present classical parametric methods and computer-intensive (Monte Carlo) resampling methods, respectively. This is one of few books to present these new, flexible resampling techniques in an accurate, accessible manner. Much of the book is devoted to research strategies and tactics, introducing new methods in the context of case studies. Chapter 6 covers performance assessment, chapter 7 shows how to identify interactions and dependencies among several factors that explain performance, and chapter 8 discusses predictive models of programs, including causal models. The final chapter asks what counts as a theory in AI, and how empirical methods -- which deal with specific systems -- can foster general theories. Mathematical details are confined to appendixes and no prior knowledge of statistics or probability theory is assumed. All of the examples can be analyzed by hand or with commercially available statistics packages. The Common Lisp Analytical Statistics Package (CLASP), developed in the author s laboratory for Unix and Macintosh computers, is available from The MIT Press. A Bradford Book. Nº de ref. de la librería AAS9780262032254

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 106,39
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Cohen, Paul R.
Editorial: MIT Press Ltd, United States (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 1995. Hardback. Estado de conservación: New. 229 x 206 mm. Language: English . Brand New Book. Computer science and artificial intelligence in particular have no curriculum in research methods, as other sciences do. This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Although many of these techniques are statistical, the book discusses statistics in the context of the broader empirical enterprise. The first three chapters introduce empirical questions, exploratory data analysis, and experiment design. The blunt interrogation of statistical hypothesis testing is postponed until chapters 4 and 5, which present classical parametric methods and computer-intensive (Monte Carlo) resampling methods, respectively. This is one of few books to present these new, flexible resampling techniques in an accurate, accessible manner. Much of the book is devoted to research strategies and tactics, introducing new methods in the context of case studies. Chapter 6 covers performance assessment, chapter 7 shows how to identify interactions and dependencies among several factors that explain performance, and chapter 8 discusses predictive models of programs, including causal models. The final chapter asks what counts as a theory in AI, and how empirical methods -- which deal with specific systems -- can foster general theories. Mathematical details are confined to appendixes and no prior knowledge of statistics or probability theory is assumed. All of the examples can be analyzed by hand or with commercially available statistics packages. The Common Lisp Analytical Statistics Package (CLASP), developed in the author s laboratory for Unix and Macintosh computers, is available from The MIT Press. A Bradford Book. Nº de ref. de la librería AAS9780262032254

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 108,24
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Cohen, Paul R.
Editorial: MIT Press Ltd
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuevos Tapa dura Cantidad: 1
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd. Hardback. Estado de conservación: new. BRAND NEW, Empirical Methods for Artificial Intelligence, Paul R. Cohen, Computer science and artificial intelligence in particular have no curriculum in research methods, as other sciences do. This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Although many of these techniques are statistical, the book discusses statistics in the context of the broader empirical enterprise. The first three chapters introduce empirical questions, exploratory data analysis, and experiment design. The blunt interrogation of statistical hypothesis testing is postponed until chapters 4 and 5, which present classical parametric methods and computer-intensive (Monte Carlo) resampling methods, respectively. This is one of few books to present these new, flexible resampling techniques in an accurate, accessible manner. Much of the book is devoted to research strategies and tactics, introducing new methods in the context of case studies. Chapter 6 covers performance assessment, chapter 7 shows how to identify interactions and dependencies among several factors that explain performance, and chapter 8 discusses predictive models of programs, including causal models. The final chapter asks what counts as a theory in AI, and how empirical methods -- which deal with specific systems -- can foster general theories. Mathematical details are confined to appendixes and no prior knowledge of statistics or probability theory is assumed. All of the examples can be analyzed by hand or with commercially available statistics packages. The Common Lisp Analytical Statistics Package (CLASP), developed in the author's laboratory for Unix and Macintosh computers, is available from The MIT Press. A Bradford Book. Nº de ref. de la librería B9780262032254

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 103,89
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,91
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda