A Nobel laureate offers a brief lesson on physics’ biggest mystery, accessibly explaining the two quantum revolutions that changed our understanding of reality.
At the start of the twentieth century, the first quantum revolution upset our vision of the world. New physics offered surprising realities, such as wave-particle duality, and led to major inventions: the transistor, the laser, and today’s computers. Less known is the second quantum revolution, arguably initiated in 1935 during a debate between giants Albert Einstein and Niels Bohr. This revolution is still unfolding. Its revolutionaries―including the author of this short accessible book, Nobel Prize–winning physicist Alain Aspect―explore the notion of entangled particles, able to interact at seemingly impossible distances. Aspect’s research has helped to show how entanglement may both upend existing technologies, like cryptography, and usher in entirely new ones, like quantum computing. Explaining this physics of the future, this work tells a story of how philosophical debates can shape new realities.
"Sinopsis" puede pertenecer a otra edición de este libro.
Alain Aspect is professor at Institut d’Optique-Université Paris-Saclay, professor at École Polytechnique, and CNRS senior scientist emeritus. Among his many awards, Aspect was a co-recipient of the 2022 Nobel Prize in Physics “for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science.” Teresa Lavender Fagan is a freelance translator living in Chicago; she has translated numerous books for the University of Chicago Press and other publishers.
What is a difficult problem? For a computer scientist or a mathematician working in this field, a difficult problem is one that requires a calculation time that increases exponentially with the size of the object under consideration. For example, internet security uses a coding called RSA, after Ron Rivest, Adi Shamir, and Leonard Adleman, who described the algorithm in 1977. RSA security is based on the impossibility of factoring a sufficiently large number into prime factors. Factoring into prime factors means, for example, breaking down the number 60 into 3 multiplied by 4 multiplied by 5. Factoring a large number takes considerable time because you have to try all the prime numbers less than the square root of the number.
This calculation difficulty is the foundation of security. A few years ago, on the internet, coding was done on 64-bit numbers. But, with today’s more powerful computers, with great effort and networking, we can crack the code. The number of bits is then doubled, going to 128 bits, and we can rest easy for ten years. Going to 256, we enjoy another ten years, and so on. A number of theoretical physicists, applied mathematicians, and theoretical computer scientists have discovered that certain difficult problems, such as the one just described, would become easier to solve if there were a quantum computer. For example, what is called Shor’s algorithm, after mathematician Peter Shor, would enable the factorization of a number in a time that would no longer increase exponentially with size, but in a more reasonable way: a polynomial increase.
To implement Shor’s algorithm, one would need a perfect quantum computer. What does that entail? It would use quantum bits, qubits, entangled with each other. To give a vague idea of what this means, we must first ask ourselves what an ordinary “bit” is. In a classical computer system, a bit is a value that can be either 1 or 0, but never both. One traditional way to think of the two states is as a light switch, on or off. But we might equally think of the states as a photon which can go either to one side of the beam splitter or to the other.
In the quantum world, a bit can also be 1 or 0. But here is the interesting part: it can also at the same time be 1 and 0, like the photon that goes to both sides of the beam splitter at the same time in the interference experiment. So, a quantum bit or “qubit” is one that can be put in a state that is a superposition of 1 or 0. If we now take two quantum bits and entangle them, we have access to a great wealth of states because we can have 0–0, 0–1, 1–0, and 1–1, and all the combinations of these four possibilities. If we take three qubits, we have eight basic possibilities (0–0–0, 0–0–1, and so on) as well as the combinations of all those possibilities. If we entangle ten quantum bits, we obtain about a thousand basic possibilities. With twenty, we get one million basic possibilities . . . That’s exponential growth!
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: ZBK Books, Carlstadt, NJ, Estados Unidos de America
Condición: acceptable. Fast & Free Shipping â" A well-used but reliable copy with all text fully readable. Pages and cover remain intact, though wear such as notes, highlighting, bends, or library marks may be present. Supplemental items like CDs or access codes may not be included. Nº de ref. del artículo: ZWV.0226832015.A
Cantidad disponible: 1 disponibles
Librería: Half Price Books Inc., Dallas, TX, Estados Unidos de America
hardcover. Condición: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_454396185
Cantidad disponible: 1 disponibles
Librería: HPB-Emerald, Dallas, TX, Estados Unidos de America
hardcover. Condición: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_452611986
Cantidad disponible: 1 disponibles
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
Condición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Nº de ref. del artículo: OTF-S-9780226832012
Cantidad disponible: 4 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 47342617-n
Cantidad disponible: 11 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Hardback or Cased Book. Condición: New. Einstein and the Quantum Revolutions. Book. Nº de ref. del artículo: BBS-9780226832012
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47342617
Cantidad disponible: 11 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Hardback. Condición: New. A Nobel laureate offers a brief lesson on physics' biggest mystery, accessibly explaining the two quantum revolutions that changed our understanding of reality. At the start of the twentieth century, the first quantum revolution upset our vision of the world. New physics offered surprising realities, such as wave-particle duality, and led to major inventions: the transistor, the laser, and today's computers. Less known is the second quantum revolution, arguably initiated in 1935 during a debate between giants Albert Einstein and Niels Bohr. This revolution is still unfolding. Its revolutionaries-including the author of this short accessible book, Nobel Prize-winning physicist Alain Aspect-explore the notion of entangled particles, able to interact at seemingly impossible distances. Aspect's research has helped to show how entanglement may both upend existing technologies, like cryptography, and usher in entirely new ones, like quantum computing. Explaining this physics of the future, this work tells a story of how philosophical debates can shape new realities. Nº de ref. del artículo: LU-9780226832012
Cantidad disponible: 4 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Brand New. Nº de ref. del artículo: 9780226832012
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. A Nobel laureate offers a brief lesson on physics' biggest mystery, accessibly explaining the two quantum revolutions that changed our understanding of reality. At the start of the twentieth century, the first quantum revolution upset our vision of the world. New physics offered surprising realities, such as wave-particle duality, and led to major inventions: the transistor, the laser, and today's computers. Less known is the second quantum revolution, arguably initiated in 1935 during a debate between giants Albert Einstein and Niels Bohr. This revolution is still unfolding. Its revolutionariesincluding the author of this short accessible book, Nobel Prizewinning physicist Alain Aspectexplore the notion of entangled particles, able to interact at seemingly impossible distances. Aspect's research has helped to show how entanglement may both upend existing technologies, like cryptography, and usher in entirely new ones, like quantum computing. Explaining this physics of the future, this work tells a story of how philosophical debates can shape new realities. According to publisher's website books/series/FRCHCO.html), this volume forms part of the France Chicago Collectio Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780226832012
Cantidad disponible: 1 disponibles