Circular Statistics in R

3,2 valoración promedio
( 5 valoraciones por GoodReads )
 
9780199671137: Circular Statistics in R
Review:

It's amazing how often I'm asked for advice about circular statistics. Even simple questions such as 'what's the mean direction?' or 'are species active at different times of day?' require circular statistics and they are rarely catered for in statistical texts. What Pewsey et al. have produced is a long-awaited guide to both the theory and practice of circular statistics with a focus on R. It's a book I'll be consulting frequently and recommending to students and colleagues alike ( Calvin Dytham, University of York)

From the Publisher:

Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system.

This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data.

The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its <"circular>" package. Also provided are over 150 new functions for techniques not already covered within R.

This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible.

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
Editorial: Oxford University Press (2014)
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos Paperback Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción Oxford University Press, 2014. Paperback. Estado de conservación: New. book. Nº de ref. de la librería 0199671133

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 18,13
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
Editorial: Oxford University Press 2014-01-01 (2014)
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos PAPERBACK Cantidad: 1
Librería
The Book Cellar, LLC
(Nashua, NH, Estados Unidos de America)
Valoración
[?]

Descripción Oxford University Press 2014-01-01, 2014. PAPERBACK. Estado de conservación: New. 0199671133 BRAND NEW. Over 1,000,000 satisfied customers since 1997! We ship daily M-F. Choose expedited shipping (if available) for much faster delivery. Delivery confirmation on all US orders. Nº de ref. de la librería Z0199671133ZN

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 16,36
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,75
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
Editorial: Oxford University Press (2014)
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos Tapa blanda Cantidad: 1
Librería
Book Deals
(Lewiston, NY, Estados Unidos de America)
Valoración
[?]

Descripción Oxford University Press, 2014. Estado de conservación: New. Brand New, Unread Copy in Perfect Condition. A+ Customer Service! Summary: Measurements like mass, length and speed are "; but compass direction or the time of the year are ". Circular data have a repeating nature and an arbitrary zero: 12 months after the 1st of July it is the 1st of July again. This book explains how to easily and effectively analyse circular data statistically. Nº de ref. de la librería ABE_book_new_0199671133

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 26,40
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
Editorial: Oxford University Press, United Kingdom (2014)
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos Paperback Cantidad: 10
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción Oxford University Press, United Kingdom, 2014. Paperback. Estado de conservación: New. 232 x 156 mm. Language: English . Brand New Book. Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its circular package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible. Nº de ref. de la librería AOP9780199671137

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 26,42
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
Editorial: Oxford University Press, United Kingdom (2014)
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos Paperback Cantidad: 10
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción Oxford University Press, United Kingdom, 2014. Paperback. Estado de conservación: New. 232 x 156 mm. Language: English . Brand New Book. Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its circular package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible. Nº de ref. de la librería AOP9780199671137

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 26,49
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos Cantidad: > 20
Librería
BWB
(Valley Stream, NY, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Depending on your location, this item may ship from the US or UK. Nº de ref. de la librería 97801996711370000000

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 28,36
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
Editorial: Oxford University Press
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos Paperback Cantidad: 5
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción Oxford University Press. Paperback. Estado de conservación: new. BRAND NEW, Circular Statistics in R, Arthur Pewsey, Markus Neuhauser, Graeme D. Ruxton, Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concrete bridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are caught in a camera trap, or in 911 calls in New York, or in internet traffic; variation throughout the year in measles incidence, global energy requirements, TV viewing figures or injuries to athletes. The natural way of representing such data graphically is as points located around the circumference of a circle, hence their name. Importantly, circular variables are periodic in nature and the origin, or zero point, such as the beginning of a new year, is defined arbitrarily rather than necessarily emerging naturally from the system. This book will be of value both to those new to circular data analysis as well as those more familiar with the field. For beginners, the authors start by considering the fundamental graphical and numerical summaries used to represent circular data before introducing distributions that might be used to model them. They go on to discuss basic forms of inference such as point and interval estimation, as well as formal significance tests for hypotheses that will often be of scientific interest. When discussing model fitting, the authors advocate reduced reliance on the classical von Mises distribution; showcasing distributions that are capable of modelling features such as asymmetry and varying levels of kurtosis that are often exhibited by circular data. The use of likelihood-based and computer-intensive approaches to inference and modelling are stressed throughout the book. The R programming language is used to implement the methodology, particularly its "circular" package. Also provided are over 150 new functions for techniques not already covered within R. This concise but authoritative guide is accessible to the diverse range of scientists who have circular data to analyse and want to do so as easily and as effectively as possible. Nº de ref. de la librería B9780199671137

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 22,81
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,88
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
Editorial: OUP Oxford 2013-09-26 (2013)
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos Cantidad: 2
Librería
Chiron Media
(Wallingford, Reino Unido)
Valoración
[?]

Descripción OUP Oxford 2013-09-26, 2013. Estado de conservación: New. Brand new book, sourced directly from publisher. Dispatch time is 24-48 hours from our warehouse. Book will be sent in robust, secure packaging to ensure it reaches you securely. Nº de ref. de la librería NU-GRD-05029651

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 26,81
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,48
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
Editorial: Oxford University Press 2013-09-26, Oxford (2013)
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos paperback Cantidad: 1
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción Oxford University Press 2013-09-26, Oxford, 2013. paperback. Estado de conservación: New. Nº de ref. de la librería 9780199671137

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 26,51
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 5,21
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Pewsey, Arthur; Neuhäuser, Markus; Ruxton, Graeme D
ISBN 10: 0199671133 ISBN 13: 9780199671137
Nuevos Cantidad: 2
Librería
Speedy Hen LLC
(Sunrise, FL, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Bookseller Inventory # ST0199671133. Nº de ref. de la librería ST0199671133

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 31,79
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda