This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
"Sinopsis" puede pertenecer a otra edición de este libro.
Luc Bauwens is currently Professor of Economics at the Université catholique de Louvain, where he has been co-director of the Center for Operations Research and Econometrics (CORE) from 1992 to 1998. He has previously been a lecturer at Ecole des Hautes Etudes en Sciences Sociales (EHESS), France, at Facultés universitaires catholiques de Mons (FUCAM), Belgium, and a consultant at the World Bank, Washington DC. His research interests cover Bayesian inference, time series methods, simulation and numerical methods in econometrics, as well as empirical finance and international trade.
Michel Lubrano is Directeur de Recherche at CNRS, part of GREQAM in Marseille.
Jean-François Richard is University Professor of Economics at the University of Pittsburgh.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,88 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 5,19 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA75801987731295
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780198773122_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9780198773122
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9780198773122
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 80383-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 80383
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 80383-n
Cantidad disponible: Más de 20 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condición: new. Hardcover. This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers abroad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It containsalso an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods. This book covers the principles and tools of Bayesian inference in econometrics. Bayesian inference is a branch of statistics that integrates explicitly both data and prior information in model building, estimation and evaluation. The book shows how to use Bayesian methods in models suited to the analysis of macroeconomic and financial time series Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780198773122
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 80383
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers abroad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It containsalso an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods. This book covers the principles and tools of Bayesian inference in econometrics. Bayesian inference is a branch of statistics that integrates explicitly both data and prior information in model building, estimation and evaluation. The book shows how to use Bayesian methods in models suited to the analysis of macroeconomic and financial time series Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780198773122
Cantidad disponible: 1 disponibles