Concentration inequalities for functions of independent random variables is an area of probability theory that has witnessed a great revolution in the last few decades, and has applications in a wide variety of areas such as machine learning, statistics, discrete mathematics, and high-dimensional geometry. Roughly speaking, if a function of many independent random variables does not depend too much on any of the variables then it is concentrated in the sense that with high probability, it is close to its expected value. This book offers a host of inequalities to illustrate this rich theory in an accessible way by covering the key developments and applications in the field.
The authors describe the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.
A self-contained introduction to concentration inequalities, it includes a survey of concentration of sums of independent random variables, variance bounds, the entropy method, and the transportation method. Deep connections with isoperimetric problems are revealed whilst special attention is paid to applications to the supremum of empirical processes.
Written by leading experts in the field and containing extensive exercise sections this book will be an invaluable resource for researchers and graduate students in mathematics, theoretical computer science, and engineering.
"Sinopsis" puede pertenecer a otra edición de este libro.
Stéphane Boucheron is a Professor in the Applied Mathematics and Statistics Department at Université Paris-Diderot, France.
; Gábor Lugosi is ICREA Research Professor in the Department of Economics at the Pompeu Fabra University in Barcelona, Spain.
; Pascal Massart is a Professor in the Department of Mathematics at Université de Paris-Sud, France.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 64,59 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,72 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 496 pages. 8.43x5.85x0.73 inches. In Stock. Nº de ref. del artículo: __019876765X
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 740. Nº de ref. del artículo: B9780198767657
Cantidad disponible: 15 disponibles
Librería: moluna, Greven, Alemania
Buch. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. An accessible account of the rich theory surrounding concentration inequalities in probability theory, with applications from machine learning and statistics to high-dimensional geometry. This book introduces key ideas and presents a detailed summary of the. Nº de ref. del artículo: 594413957
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 496 pages. 8.43x5.85x0.73 inches. In Stock. Nº de ref. del artículo: zk019876765X
Cantidad disponible: 1 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: 2fef96645ed6f8bd5ea3f96766076e9d
Cantidad disponible: Más de 20 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Paperback. Condición: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Nº de ref. del artículo: 019876765X-11-1
Cantidad disponible: 1 disponibles
Librería: Buchpark, Maidenhead, Berkshire, Reino Unido
Condición: Fair. Condition: Fair | Pages: 496 | Language: English | Product Type: Books. Nº de ref. del artículo: 26451255/24
Cantidad disponible: 1 disponibles